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Abstract. Passes are prepaid packages of multiple units of goods or services with flexible
consumption times. They may take a variety of forms such as commuter passes in
transportation, capped quotas in telecommunications, or memberships in health or beauty
clubs. We consider a monopolist selling products or services to strategic customers by
dynamically pricing passes in conjunction with individual items. The strategic behavior is
captured by a dynamic choice model that endogenizes strategic purchase, utilization, and
renewal of the pass. Under the control-theoretic framework, we find that the optimal
pricing policy has a turnpike property; the optimal price trajectories stay near the steady
state for most of the sales horizon, and the fixed-pricing policy performs very well when
the horizon is long enough. In the turnpike, we show that passes should offer a quantity
discount when customers are not fully strategic. As a form of advance purchase, passes
allow the firm to capitalize on strategic behavior without limiting the supply. From the
revenue-recognition principle, we show that a passholder can generate a higher revenue
rate than a nonpassholder customer.
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1. Introduction
Most customers of theme parks, transportation, and
gyms are now familiar with passes, which consist of a
prepaid package of (possibly unlimited) credits that
can be redeemed for future use before an expiration
date. Public transportation has a long history of selling
prepaid bundles of tickets in the form of stored-value
cards or tokens. Many recreational venues such as ski
resorts offer seasonal passes that grant the holder
multiple access for one season without additional
charges. Passes are also sold under various names or
forms. For example, the instant messaging app Skype
sells a fixed number of “Skype credits” that can be
redeemed toward international texting or calling to
mobile phones; this is essentially a type of pass. Many
prepaid vouchers, health or beauty clubmemberships,
or meal plans are also examples of passes.

Passes are commonly sold and managed through
the same sales channel as individual items, so cus-
tomers can choose between an individual purchase
and the pass. In addition to the convenience and dis-
count over individual purchase, passes may also offer
additional perks such as priority service, free parking,
or coupons exclusive to passholders.

Dynamic pricing is becoming more prevalent in
various industries. In dynamic pricing settings, passes
offer various benefits to the customers. For example,
they can lock in prices and protect passholders against
future price changes. They also allow passholders to
strategize on the utilization of passes and maximize
their utilities. That is, a strategic passholder may use
the pass when the price of an individual item is high
but buy individually when the individual price is low.
However, this is not without risk because passholders
may fail to use up all the credits on the pass by
the expiration date. Therefore, they need to carefully
evaluate the utility of each credit on the pass. Note that
the utility of a credit is entangled with future indi-
vidual prices. For example, if future individual prices
were higher, then the utility of a credit would also be
higher because the customer could use it to circumvent
higher prices and achieve more savings.
Passes also present considerable challenges for the

firm’s pricing decisions. First, passes naturally divide
customers into two segments—passholders and non-
passholder customers—with possibly different be-
haviors. Passholders can redeem their credits in ex-
change for services or products, but such an option is
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obviously not available to nonpassholder customers.
Furthermore, passholders can be heterogeneous;
empirical studies show that the redemption rate de-
pends on the remaining credit balance (Andrews et al.
2014): customers tend to consume more when the
remaining balance is sufficient but curb the usage
when the balance becomes low (Assuncao and Meyer
1993, Folkes et al. 1993). This suggests that the pas-
sholder segment may be further divided into many
subsegments with different credit balances.

Second, customers continuously migrate between the
segments. A nonpassholder customer becomes acpas-
sholder by purchasing the pass. But when the credits on
the pass are used up, he or she becomes a nonpassholder
again. In addition, passholders can migrate from one
credit level to another by redeeming credits. Note that
thesemigrations are driven by customers’ own choices,
such as pass purchase, credit redemption, or wait.
Because these choices are price sensitive, the migra-
tions can be influenced by the firm’s pricing decisions.

The firm can potentially price passes dynamically
but must coordinate this with the dynamic individual
prices. To jointly price passes and individual items in
a dynamicway, the firmneeds to carefully account for
customer choices and the resulting migrations. For
example, passes may cannibalize the profit from in-
dividual items when a customer who is willing to pay
higher individual prices ends up paying less with
the pass. A pass sale nowmay also cannibalize future
sales because the passholders need not paywhen they
redeem the credits in the future. A dynamic pass price
also influences strategic credit redemptions because
passholdersmay time their redemption to renew their
passes at low prices (Ailawadi and Neslin 1998, Bell
et al. 2002). Additionally, as mentioned earlier, the
redemption decision depends on individual price be-
cause the credits can protect passholders against indi-
vidual price changes.

In this paper, we develop a dynamic model for a
monopoly to jointly price passes and individual items
in the face of strategic customers. Customers optimize
their sequential purchase and redemption decisions
tomaximize their intertemporal utilities, so the profit-
maximizing firm must account for customers’ stra-
tegic decisions when it sets the prices. In our model,
customer choice and the correspondingmigrations are
all endogenized: we explicitly model how customers
make strategic purchase and redemption decisions
(such as what to buy, when to buy, and when to re-
deem) and how they migrate from one segment (or
subsegment) to another. The model is stylized but
incorporates all aforementioned attributes and chal-
lenges that are important in selling passes. We use this
model to address the following questions: How should
the firm price passes in conjunction with individual
items? How do price, demand, and profit depend on

the forward-looking behaviors of strategic customers?
And what are the benefits of selling passes, if any?
We propose a control-theoretic modeling frame-

work that endogenizes customers’ rational sequential
choices in a dynamic pricing setting. It integrates the
dynamic choice models with the optimal control the-
ory, allowing us to study the optimal pricing problem
involving complex strategic behavior. The framework
is based on a fluidmodel operating in continuous time,
which is different from the game-theoretic framework
(Besanko and Winston 1990, Levin et al. 2009).
We observe that the optimal pricing policy has a

turnpike property: the optimal price trajectories stay
close to the steady state for most of the time except
near the beginning and the end of the horizon, pro-
vided that the sales horizon is sufficiently long (to the
extent that passholders have plenty of time to spend
all their credits). In this sense, the trajectory of the
optimal price is similar to the best route of driving
from one city to another city: when the two cities are far
apart, it is best to take the turnpike and stay there for
most of the timeuntil one comes close to the destination.
The presence of the turnpike property suggests that

the firm should adopt a “lazy” pricing policy. During
the turnpike regime, it should avoid frequent price
changes tomitigate complex dynamic responses from
strategic customers. Although complex dynamic be-
haviors may still take place, they are largely confined
to the beginning and end of the sales horizon. In fact,
the longer the sales horizon is, the longer the prices stay
near the steady state, and a greater percentage of profit
is generated near the steady state.
Near the turnpike, passes should offer fewer quantity

discounts when customers are more forward looking.
An interesting finding is that customer’s forward-
looking behaviors can boost the total profit of the
firm offering passes (even under ample supply). This
finding contradicts the general intuition that forward-
looking behaviors are detrimental to profit. Passes
use the advance purchase to capitalize on forward-
looking behavior by exploiting customer uncertainty
about future utilities (Shugan and Xie 2000).
Because passholders prepay for their future con-

sumption, a natural question is, does a passholder
generate the same profit rate as a nonpassholder
customer eventually? If yes, then passes simply shift
the future profit to the present. However,we show that
in most practice-relevant settings, a passholder gen-
erates a higher profit rate than a nonpassholder cus-
tomer and thus ismore valuable to the firm.We further
identify key drivers of the excess profit of passes.

2. Relevant Literature
the literature on pass pricing in thepresence of strategic
customers is limited. Here we highlight some areas
related to different facets of the problem.

Wang, Levin, and Nediak: Selling Passes to Strategic Customers
1096 Operations Research, 2020, vol. 68, no. 4, pp. 1095–1115, © 2020 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

15
.1

89
.1

40
] 

on
 0

7 
N

ov
em

be
r 

20
23

, a
t 0

7:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



2.1. Advance Purchase
Because the pass requires customers to prepay for
future consumption, it can be viewed as a form of
advance purchase. The customers pay for the right of
future consumption, which may or may not lead to
actual consumption. It is already understood that
advance purchase has several benefits to the firm: it
can mitigate the firm’s information disadvantages by
shifting some uncertainties to the customers (Shugan
and Xie 2000) and hence generate higher profit when
customers are uncertain about their future valuations
(Dana 1998, Xie and Shugan 2001). If some credits
remain unused at the expiration date, the firm can
view the related sales as profit (also known as breakage
in accounting).

2.2. Multiunit Pricing
Advance purchase is just one facet of the problem.
What the pass advance sells is a package of multiple
identical items. In reality, passes almost always offer
some quantity discounts, where the unit price de-
creases with the purchase quantity. The literature on
quantity discounts is rich in economics and market-
ing (Wilson 1993). It is known that quantity discounts
can price discriminate customers with different con-
sumption volumes to improve revenue (Dolan 1987).
However, most of the quantity discount models in
the existing literature are static and hence are dif-
ferent from our dynamic model. In addition, our
model considers customers choosing between indi-
vidual items and the pass, so it is naturally related to
multiunit pricing problems with choices (Maskin and
Riley 1984, Tirole 1988, Stole 2007). A common as-
sumption in that literature is that customers are not
forward looking, but in our context, the utility of a
pass also depends on the future dynamic prices that
the credits can circumvent. It also depends on time
because the utility diminishes near expiration. These
dynamics are not captured by existing models.

Although a pass combines advance purchase and
multiunit sales, the joint dynamic pricing problem is
more than a straightforward integration of existing
advance purchase and multiunit pricing problems
because thefirmneeds to consider pass-related choices
made by the customers, including purchases, redemp-
tions, and renewals. For example, the credit redemption
process is inherently dynamic and strategic, whereas
the primary focus of the existing literature is on only
the initial, not subsequent, purchases. Empirical studies
show that the redemption rate depends on the
remaining credit balance as well as on the time to ex-
piration (Andrews et al. 2014). With sufficient credits
in hand, customers tend to consume at a faster rate
(Assuncao and Meyer 1993). The consumption rate

will decrease with consumption, because a lower
credit balance is perceived as more valuable (Folkes
et al. 1993).
Moreover, the sale of a package of multiple units

can create a temporary drop in future demand for
individual items because the passholders do not
pay when they redeem the credits. This is similar to
the postpromotion dip caused by strategic stockpiling
(Macé and Neslin 2004, Su 2010). This temporal
cannibalization of future demand is another differ-
ence between pass pricing and existing multiunit
pricing models.

2.3. Bucket Pricing
The pass sets a flat fee for a maximum allowance for
consumption, or quota, which is similar to bucket
pricing in telecommunications industries (Sun et al.
2006, Schlereth and Skiera 2012). The literature on
bucket pricing is dominated by empirical studies that
examine customer choices among different plans
(i.e., price and quota combinations) rather than the
optimal pricing decisions. Sun et al. (2006) studied
customer behaviors in onlinemovie rentals and found
that customers often overpay for their actual con-
sumption. This underutilization allows the firm to
“oversell” and capitalize on the unused items. The
time horizon for bucket pricing programs is typically
short; as a result, most customers cannot use up the
quota before it expires. By contrast, the pass is usually
valid for a sufficiently long time and allows pas-
sholders to spend all their credits and subsequently
renew the pass. In this sense, pass pricing is probably
more intricate than bucket pricing. It is interesting to
note that Sun et al. (2006) also observe that customer
behavior indeed depends on long-term perception of
cost, as we speculated earlier. We endogenize this
dependence in our model. At a high level, our work
is also related to the literature involving forward-
looking customers; see Chen and Shi (2017) and
Chen and Chu (2018) for recent developments.

2.4. Unlimited Passes
We focus on the multipass or the limited pass that
contains a finite number of credits, which is more dif-
ficult to analyze than theunlimitedpass that contains an
infinite number of credits. Carbajo (1988) has studied
the static pricing problem for unlimited passes with
myopic customers, in which the unlimited pass is
viewed as a special case of two-part tariff (Oi 1971).
The pass price can be considered as a lump-sum fee,
and the per-unit charge is 0. Because of the zero per-
unit charge, a customer with an unlimited pass has no
incentive to buymore items individually. In addition,
passholders can never migrate to the nonpassholder
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segment by themselves until the pass expires. With
limited passes, however, customers may eventually
run out of the pass credits and loose the price pro-
tection; passholders need to be skillful at redemption.
In the same vein, the firm must account for strategic
redemption, repeated pass purchases, and bidirec-
tional migrations between two segments. Conse-
quently, pricing the limited pass ismore complex than
pricing the unlimited pass.

3. The Joint Pricing Model
The pricing problem takes place continuously over a
finite sales horizon [0,T], and there is an abundant
supply.We apply the optimal control theory to derive
the open-loop pricing policy for the firm (Sethi and
Thompson 2000). The firm announces the entire price
trajectories at the beginning of the sales horizon and
commits to the prices. We will discuss price com-
mitment after Theorem 1. It can also be justified in
many practical settings; see Chen and Shi (2017) and
the references therein. We consider the deterministic
open-loop control problem for the sake of tractability,
yet this framework can reveal useful insights into the
corresponding stochastic problem and help in finding
good heuristics (a detailed discussion is given in
Section EC.26 of the online appendix).

It is mathematically convenient to use a fluidmodel
to approximate the sales process. That is, each item is
treated as infinitesimal, and sales unfold continuously.
There is a finite population of customers; each customer
is again infinitesimal, and the whole population is nor-
malized to 1. Random decision opportunities arise at a
rate of λ, which can be interpreted as the maximum
shopping opportunities. A customer may or may not
purchase when a shopping opportunity arises, and
thus the actual demand rate depends on the cus-
tomer’s choice probabilities and can vary over time.

An item may be sold individually or with the re-
demption of one credit by a passholder. The firm
decides both the price of individual items ft and the
price of the pass pt for all t ∈ [0,T]. Each pass includes
k̄ + 1 credits initially. Because pass utilization typically
commences very quickly after purchase, we assume
that the first credit is used immediately, and the
passholder has k̄ credits to use in the future. A cus-
tomer can hold atmost one pass at a time and does not
stockpile multiple items or profit from arbitrage by
reselling his or her own pass credits to other cus-
tomers. A passholder remains a potential source of
renewing the pass later when he or she spends all the
credits on the pass. All unused credits expire at the
end of the horizon.

Customers are forward looking andmaximize their
expected utilities by strategically choosing among

multiple alternative actions based on various personal
factors that may not be observable to the firm. More
important, customers themselves face substantial un-
certainty about their future consumption states when
purchasing the pass because the purchase time is
separated from the consumption time. Therefore, the
behavior of each individual customer appears to be
random to some extent. However, the firm can cal-
culate the probability that a specific alternative is
chosen, and consequently, the customer population
as a whole evolves in a deterministic manner because
each customer is infinitesimal.
Consider a nonpassholder customer facing a de-

cision opportunity at time t. With no pass credit in
hand, he or she can choose an individual item, choose
the pass, or do nothing. Let πs

0t denote the probability
of purchasing an individual item, in which case
nonpassholder customer pays the individual price ft
and remains a nonpassholder customer with no credit.
Similarly, if he or she did nothing, he or she also re-
mains a nonpassholder customer until the next de-
cision opportunity when he or she can decide again.
But if he or she purchased the pass (which occurs with
probability π

p
0t), he or she pays the pass price pt, uses

the first credit immediately, and keeps the rest of the k̄
credits for future use. By doing so, he or she becomes a
passholder and can strategize on credit redemption.
Choices available to him or her include the redemp-
tion of a credit, the purchase of an individual item,
and doing nothing. Given a decision opportunity at
time t, a passholder with k remaining credits pur-
chases an individual itemwith probabilityπs

kt and still
keeps k credits in hand. He or she can also redeem a
credit with probability πr

kt, after which he or she has
k − 1 credits remaining. Similar decisions are repeated
at subsequent random decision opportunities until he
or she depletes credits on the pass and becomes a
nonpassholder customer again, from which point he
or she continues the decision-making process. The
cycle of decisions is illustrated in Figure 1.
Because the entire customer population is nor-

malized to 1, we usewkt to represent the population of
customers with k credits at time t, where k � 0, . . . , k̄,
and w0t represents the population of nonpassholder
customers. The rate λ is split among customers with
different credit balances in proportion towkt. From an
individual customer standpoint, the resulting pur-
chase or consumption processes are nonhomogeneous
compound Poisson processes. Intensities of individual
and pass purchases by nonpassholder customers are
λw0tπs

0t and λw0tπ
p
0t, respectively. Similarly, λwktπs

kt
and λwktπr

kt are the intensities of individual and credit
redemption by passholders with k remaining credits,
respectively, where k � 1, . . . , k̄. Customers migrate
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among different credit levels according to a recur-
rent continuous-time Markov chain. The probability
distribution of this chain corresponds to the pop-
ulation distribution, and its continuous-time evolution
is described by the following ordinary differential
equations:

ẇkt � λw(k+1)tπr
(k+1)t − λwktπ

r
kt, k � 1, . . . , k̄ − 1,

ẇk̄t � λw0tπ
p
0t − λwk̄tπ

r
k̄t,

ẇ0t � λw1tπ
r
1t − λw0tπ

p
0, (1)

with initial conditionw00 � 1 and wk0 � 0, for k � 1, . . . ,
k̄. These differential equations can be easily inter-
preted by noting that the net rate of change in each
subpopulation is the difference between the inflow
rate and the outflow rate. The initial conditions as-
sume that there are no passholders at the beginning
of the sales horizon.

Up to this point, we have treated the choice prob-
abilities π

p
0t, π

s
0t, π

r
kt and πs

kt as given. In fact, they all
depend on price trajectories, the number of remaining
credits, time to expiration, and customers’ forward-
looking behaviors. We model how a strategic cus-
tomer population responds to dynamic prices using
the dynamic choice model (Rust 1987), which is well
suited for situations where customers make their
sequential decisions to maximize the expected dis-
counted utilities. Details about this model and the
related derivations are found in Section EC.1 of the
online appendix, in which we first model how indi-
vidual customers evaluate the choice alternatives over
time and then aggregate the choices from the entire
population. The resulting dynamic choice model is
presented in the following theorem.

Theorem 1 (Customer’s Dynamic Choice Model). Let Ukt
denote the customer’s expected utility of holding k credits at
time t. Under Assumptions EC.1–EC.3 in the online ap-
pendix, {Ukt, k � 0, . . . , k̄} satisfy the following ordinary
differential equations:

U̇kt � −λμ ln 1 + exp
a −Ukt +U(k−1)t

μγ

( )[{
+ exp

a − ft
μγ

( )]γ}
+ ρUkt, k � 1, . . . , k̄,

U̇0t � −λμ ln 1 + exp
a − pt +Uk̄t −U0t

μγ

( )[{
+ exp

a − ft
μγ

( )]γ}
+ ρU0t, (2)

with terminal conditions UkT � 0. Furthermore, the so-
lution to this terminal value problem is unique for any given

pricing policy,1 and the corresponding choice probabilities
are given by

π
p
0t �

exp
a− pt +Uk̄t

μγ

( )
· exp

a− pt +Uk̄t

μγ

( )
+ exp

a− ft +U0t

μγ

( )[ ]γ−1
exp

U0t

μ

( )
+ exp

a− pt +Uk̄t

μγ

( )
+ exp

a− ft +U0t

μγ

( )[ ]γ ,
(3)

πs
0t �

exp
a− ft +U0t

μγ

( )
· exp

a− pt +Uk̄t

μγ

( )
+ exp

a− ft +U0t

μγ

( )[ ]γ−1
exp

U0t

μ

( )
+ exp

a− pt +Uk̄t

μγ

( )
+ exp a−ft+U0t

μγ

( )[ ]γ ,
(4)

πr
kt �

exp
a+U(k−1)t

μγ

( )
· exp

a+U(k−1)t
μγ

( )
+ exp

a− ft +Ukt

μγ

( )[ ]γ−1
exp

Ukt

μ

( )
+ exp

a+U(k−1)t
μγ

( )
+ exp

a− ft +Ukt

μγ

( )[ ]γ ,
(5)

πs
kt �

exp
a− ft +Ukt

μγ

( )
· exp

a+U(k−1)t
μγ

( )
+ exp

a− ft +Ukt

μγ

( )[ ]γ−1
exp

Ukt

μ

( )
+ exp

a+U(k−1)t
μγ

( )
+ exp

a− ft +Ukt

μγ

( )[ ]γ ,
k � 1, . . . , k̄.

(6)
All proofs in this paper are located in the online

appendix. The demand model described in this the-
orem takes the price paths ( ft, pt) as inputs and pro-
duces the expected utilities (Ukt) and then choice
probability paths (πp

0t, π
s
0t, π

r
kt, π

s
kt) as deterministic

outputs. Because the credit k can be redeemed at any
time before T, the corresponding expected utility Ukt
should depend on the entire price trajectories from t to T.
It also should depend on the time to expiration be-
cause a credit has lower value when it is expiring
soon. These effects are indeed captured by the model
(see Section EC.3 in the online appendix). Note that
the terminal conditions UkT � 0 suggest that any
unused credits have no value at the end of the horizon.
The recursion in (2) starts from a credit’s expiration
time and works backward in time to value each credit
by backward induction. As a result, the expected utility
Ukt depends on all future price paths2 { fs, ps, t ≤ s ≤ T},
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the number of remaining credits k, and the time to
expiration T − t. It is also important to note that Ukt
does not depend on past price paths, which ensures
that the optimal pricing policy is time consistent.

The discount factor ρ is a measure of the level of
strategic behavior; a lower ρ is associated with more
strategic customers. When ρ → 0, the customers are
fully strategic. When ρ → ∞, the customers aremyopic.
For 0 < ρ < ∞, the customers are partially strategic,
which is a more realistic case. It is important to note
that ρ influences the choice probabilities by influ-
encing the expected utilities Ukt through differential
Equations (2). Similarly, future price paths, the number
of remaining credits, and the time to expiration all in-
fluence the current choices.

The choice probabilities take the form of the nested
logit model, in which the parameter γ ∈ (0, 1] mea-
sures the degree of independence between the idio-
syncratic components of utilities of individual con-
sumption and the consumption with a pass, with a
larger value representing greater independence; γ can
also be viewed as a measure of the unobserved het-
erogeneity in customer preferences. The largest het-
erogeneity occurswhen γ � 1, in which case ourmodel
reduces to the dynamic logit model (Rust 1994). Al-
though the choice probabilities for this case take the
logit form, they do not exhibit the independence from
irrelevant alternatives (IIA) property because the ex-
pected utilities Ukt depend on the attributes of irrel-
evant alternatives.3 Moreover, although the dynamic
logit model is originally derived from the randomutility
theory, it also arises from the optimal information-
processing policy in an information-theoretic model of
rational inattention (Steiner et al. 2017). In the rational
inattention theory, customersmake optimal decisions
on processing costly information about the choice
alternatives (Sims 2003).

The other extreme case, γ → 0, represents a situa-
tionwhere the idiosyncratic components of utilities of

individual and pass consumption are perfectly corre-
lated. This situation is uncommon in practice because
the pass is naturally differentiated from the individual
ticket. Specifically, the pass is based on advance selling
ofmultiple tickets, and its value depends on the customer’s
consumption state, which can vary from time to time
and from customer to customer. For example, the value
of a multiday ski pass may depend on the customer’s
state, including health and mood, scheduling con-
flicts, state of companions, projects at work, and
weather condition. Customers may enjoy the pass
more when they are energetic and not preoccupied but
like it lesswhen they are fatigued or have uncompleted
projects at work. Even if the pass provides the same
service as the individual ticket, customers’ preferences
may still diverge as a result of heterogeneity in the
estimation of future consumption states. Budget con-
straints also contribute to the differentiation; because
pass buyers need to pay a lump-sum fee, the customers
on a budget may prefer individual purchase. The dif-
ferentiation is further enhanced by the convenience and
additional perks associated with the pass.
Finally, we can see in Theorem 1 that the choice

probabilities depend on Ukt only through their dif-
ferences. Thus,we introduce a new state variableΔUkt ≜
Ukt −U(k−1)t, k � 1, . . . , k̄, representing the marginal
expected utility of credit k, and we will use ΔUkt

going forward. Accordingly, the utility equations (2)
can be rewritten as

ΔU̇kt � −λμ ln 1−πr
(k−1)t −πs

(k−1)t
( )

− ln 1−πr
kt −πs

kt

( )[ ]
+ ρΔUkt, k � 2, . . . , k̄,

ΔU̇1t � −λμ ln 1−π
p
0t −πs

0t

( )−ln 1−πr
1t −πs

1t

( )[ ]+ ρΔU1t.

(7)
The firm incurs a marginal cost c of providing each

product or service. The objective of the firm is to

Figure 1. A Customer’s Decision and Migration Cycle
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maximize the total profit by controlling the individual
and pass prices over the sales horizon:4

max
{pt ,ft}

∫ T

0
λ(pt − c)w0tπ

p
0t⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟

pass sales profit

+∑k̄
k�0

λ( ft − c)wktπ
s
kt⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

individual sales profit

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−∑k̄

k�1
λcwktπ

r
kt⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟

redemption cost

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt,

subject to the state equations and boundary condi-
tions for customermigrations (1), expected utilities (2)
or its equivalent (7), and the choice probabilities (3)–(6).
The influence diagram of the decision problem is in

Figure 2, in which prices influence utilities, and they
jointly determine the choice probabilities, which drive
the customer migration and determine the population
distribution over different credit levels. The profit de-
pends on prices, cost, choice probabilities, and pop-
ulation distribution. We apply Pontryagin’s maximum
principle to derive the necessary conditions for the
optimal pricing policy (Sethi and Thompson 2000).
The optimal control policy is characterized by a non-
linear differential-algebraic system of equations given
in Section EC.7 of the online appendix.

4. Turnpike Properties
Through extensive numerical experiments, we observe
that the optimal pricing policy exhibits a turnpike
property: the optimal state and control trajectories stay
close to the steady state for most of the sales horizon if

Figure 2. Influence Diagram of the Pricing Decision Problem

Figure 3. (Color online) An Illustration of Turnpike Properties (k̄ � 2)
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the horizon is sufficiently long. More specifically, if the
sales horizon is longer than a certain threshold such
that the steady state can be approached, the optimal
trajectories will converge to the turnpike regardless of
the initial and terminal conditions. This behavior is
similar to driving along a major highway: if one wishes
to drive from one city to another across a long distance,
then one should first get on a major highway, spend
most of the time on it (similar to a steady state), and
finally, leave the highway to reach the destination.

An example illustrating the temporal behavior of
the optimal price is shown in Figure 3. The parameters
are specified as (T, c, k̄, λ, a, μ, ρ, γ) � (1,000, 0.1, 2, 0.03,
2, 1, 0.006, 0.9). The optimal trajectories can be roughly
divided into three stages: an initial adjustment stage,
a steady-state stage, and a terminal adjustment stage.
The initial adjustment is similar to the turnpike en-
trance ramp, which transfers the initial condition
to the steady state. The second stage lies in the middle
of the sales horizon and is the steady state (as shown
in the shaded region), during which all state and
control variables stay near constant levels. On reaching
the terminal adjustment stage, state and control variables
start to deviate from the steady state and make contin-
uous adjustments to reach the terminal value (similar to a
turnpike exit ramp). Strictly speaking, the optimal path
stays close to—but not exactly on—the steady state.

We vary the initial credit distribution w10 in Fig-
ure 4(a) and the terminal marginal utility ΔU1T in

Figure 4(b) to examine how the optimal state path
depends on the boundary conditions. Other param-
eters are chosen as (T, c, k̄, λ, a, μ, ρ, γ) � (600, 0.1, 1,
0.03, 2, 1, 0.006, 0.9). We observe that the optimal tra-
jectories associated with different boundary values
converge to the same steady state and stay near it in the
middle of the horizon. Figure 4(c) illustrates how w0t
changes when the horizon length T varies. When the
horizon is short (e.g., T < 300), the steady state may
not be approached. However, as long as its length
exceeds a certain level (e.g., T > 400), the steady state
can always be approached, and in addition, the terminal
adjustment stages always appear the same. In practice,
the sales horizons are generally long enough tomake the
turnpike reachable. This is so because the steady state
represents a scenariowheremost passholders can spend
all the credits on the pass and then renew their passes.
A horizon that is too short for full utilization may ruin
the firm’s reputation or violate regulations.
The presence of a turnpike property might appear

surprising in our context. As discussed in Section 1,
the strategic behavior of passholders can be very
complex in a dynamic pricing situation. The turnpike
property suggests that this complexity is confined to
only the initial and terminal stages of the sales horizon.
In most times, the firm should keep prices stable to
mitigate the complex strategic behaviors. It is alsoworth
noting that even when facing constant prices, strategic
customers may still delay purchase and wait until the

Figure 4. Optimal State Paths with Different (a) Initial Values, (b) Terminal Values, and (c) Horizon Lengths

Table 1. The Performance of the Fixed Price Approximation

Arrival rate Horizon T � 100 T � 200 T � 300 T � 400 T � 500 T � 600 T � 700 T � 800 T � 900

λ � 0.01 Optimal profit 1.216 2.341 3.437 4.524 5.606 6.687 7.767 8.846 9.926
Approx. profit 1.174 2.297 3.394 4.480 5.563 6.643 7.724 8.803 9.883
Approx. error 0.042 0.045 0.044 0.043 0.043 0.043 0.043 0.043 0.043

Relative error (%) 3.42 1.90 1.28 0.96 0.77 0.64 0.55 0.49 0.43
λ � 0.04 Optimal profit 4.749 9.287 13.819 18.350 22.881 27.411 31.942 36.473 41.004

Approx. profit 4.702 9.242 13.773 18.304 22.835 27.366 31.897 36.428 40.959
Approx. error 0.048 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

Relative error (%) 1.00 0.49 0.33 0.25 0.20 0.17 0.14 0.12 0.11
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valuation of consumption becomes higher (namely,
wait until they need it the most), as strategic customers
aim to maximize their expected surplus.

The turnpike is characterized by a system of al-
gebraic equations given in Section EC.9 of the online
appendix. It consists of the steady-state solutions to
the state and adjoint equations, as well as the first-
order conditions for the Hamiltonian. Let w̄k,ΔŪk
denote the turnpike state variables, and let η̄wk , η̄

u
k

denote the adjoint variables. The steady-state prices
are denoted by f̄ , p̄, and choice probabilities are
denoted by π̄

p
0, π̄

s
0, π̄

r
k, π̄

s
k.

The existence of the turnpikeproperty naturally gives
rise to the idea of using steady-state prices to approx-
imate the dynamic prices. In Table 1, we compare the
profit from the optimal dynamic prices with that from
the turnpike prices for different lengths of sales ho-
rizon and arrival rates. The parameters for this ex-
ample are (k̄, a, μ, γ, c) � (1, 2, 1, 0.3, 0.1). The relative
approximation error diminishes as the sales hori-
zon becomes longer. This suggests that selling both
passes and individual items at flat rates may be
close to optimal. In addition, the flat rates perform
better when the decision opportunities arise at a
higher rate.

We now focus onwhat happens in the turnpike. For
brevity, wemay omit the term turnpike from this point
on. To begin with, we show that each credit has a
positive marginal value.

Lemma 1. The marginal utility is nonnegative in the
turnpike (i.e., ΔŪk ≥ 0) for k � 1, . . . , k̄.

The following proposition shows that passes can
result in heterogeneous consumption probabilities
and that the heterogeneity is mediated by the level of
strategic behavior.

Proposition 1 (Heterogeneous Consumption Rate). The
turnpike choice probabilities are ordered as π̄s

0 ≥ π̄s
1 ≥ · · · ≥

π̄s
k̄
, π̄

p
0 ≤ π̄r

1 ≤ · · · ≤ π̄r
k̄
, and π̄s

0 + π̄
p
0 ≤ π̄s

1 + π̄r
1 ≤ · · · ≤

π̄r
k̄
+ π̄s

k̄
. The equalities are obtained if and only if ρ � 0.

This proposition suggests that when customers are
not fully strategic (ρ > 0), a customerwithmore credits
is less likely to buy an individual item andmore likely
to redeem the credit. Moreover, credits boost con-
sumption: the combined consumption probability
(through the pass or individual purchase) is highest
when the pass is newly purchased, and itwill decrease
with credit utilization, reaching the lowest point
when all credits are spent. However, in the extreme
case where customers are fully strategic (ρ � 0), the
number of remaining credits has no impact on the
turnpike choice probabilities. This is so because, in
the turnpike, fully strategic customers value and
use the pass credit in the same way as an individ-
ual ticket.

Proposition 2 (Diminishing Credit Utility).
a. The marginal turnpike utilities are ordered as

ΔŪ1 ≥ ΔŪ2 ≥ · · · ≥ ΔŪk̄.
b. The turnpike pass price is bounded by p̄ ≥ ΔŪ1 +∑k̄
k�1 ΔŪk.

Proposition 2 suggests that the marginal utilities of
credits are diminishing in the credit balance. Cus-
tomers place a higher value on an item that is scarce.
Furthermore, the pass price is higher than the mar-
ginal utilities aggregated from all credits.
LetΔη̄wk denote the turnpike shadow price of the kth

credit on the pass (see Section EC.7 of the online
appendix for details). We now introduce the notion of
economic profit to be used throughout this paper. It is
defined as the price net of all the corresponding
shadow prices and cost. For example, the economic
profit of a pass is p̄ −∑k̄

k�1 Δη̄
w
k − c—namely, the pass

price minus the shadow prices of all credits and the
cost of serving the first use. Similarly, the economic
profit of credit k isΔη̄wk − c—namely, the shadow price
of that credit net of the cost of serving a redemption.
The economic profit of an individual item is always
f̄ − c, the individual price net of the marginal cost. To
calculate the expected economic profit, wemultiply the
economic profits by the corresponding probabilities.

Proposition 3 (Constant Expected Economic Profit). The
expected economic profit is invariant with respect to (w.r.t.)
the number of credits remaining. That is,

α≜ π̄
p
0 p̄ −∑k̄

k�1
Δη̄wk − c

( )
+ π̄s

0 f̄ − c
( )

� π̄r
k Δη̄

w
k − c

( ) + π̄s
k f̄ − c
( )

for k � 1, . . . , k̄.

This proposition suggests that every customer,
regardless of credit balance, generates the same ex-
pected economic profit in the turnpike. It is important
to distinguish expected economic profit from expected
profit, which is not necessarily invariant with respect
to the credit balance (see Section 7).

5. Fully Strategic/Myopic Customers
The closed-form solution to the general turnpike
equations in Section EC.9 of the online appendix can
be extremely difficult, if not possible, to obtain. To
gain insights into the pricing policy,we beginwith the
following two special cases: fully strategic customers
(ρ � 0) and myopic customers (ρ → ∞).

Proposition 4 (Fully Strategic Customers). For fully stra-
tegic customers (ρ � 0), the solution to the turnpike equations
is unique and is given in closed form:
a. f̄ � μ + c + μW[2γ exp(a−μ−cμ )], p̄ � (1 + k̄)f̄ ;
b. π̄s

0 � π̄
p
0 � π̄s

k � π̄r
k � W[2γ exp(a−μ−cμ )]/

(2 + 2W[2γ exp(a−μ−cμ )]), k � 1, . . . , k̄;
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c. w̄0 � w̄k � 1/(1 + k̄), k � 1, . . . , k̄; and
d. ΔŪk � Δη̄wk � f̄ , η̄uk � 0, k � 1, . . . , k̄,

where W stands for the Lambert W function.

This proposition suggests that the pass should not
offer a quantity discount to fully strategic customers
who place the same value on future and present con-
sumptions.Wealso observe that the individual price f̄ is
increasing in the marginal cost c, the independence
parameter γ, and the scaling parameter μ. Another
notable property is that all choice probabilities are
identical—namely, the demand is invariant w.r.t. the
form of purchase or the credit balance. However, they
all increase as the pass is more differentiated from
the individual purchase (as γ increases) or when the
average valuation a increases, and they decrease in the
marginal cost c. The identical turnpike choice prob-
abilities also imply that the population is evenly
distributed over all credit levels.

Note that when ρ � 0, the credit’s expected mar-
ginal utility is a constant and equals the shadow price
of the credit and the individual price—namely, ΔŪk �
Δη̄wk � f̄ . That is, a credit has the same expected
marginal value to both the customers and the firm.
Thefirm should charge the sameprice for a credit and an
individual item. At the turnpike, fully strategic cus-
tomers value future consumption the same as the pres-
ent, and consequently, a credit is perceived the same as
an individual item. Passholders essentially prepay for
their future consumption at the same price, shifting the
firm’s future profit to the present without changing
the total turnpike profit. Therefore, when ρ � 0, a
marginal change of utilities at optimality has no impact
on the turnpike profit rate, as reflected by η̄uk � 0.

When customers are myopic (ρ → ∞), the marginal
utilities vanish (ΔUkt → 0). In the following propo-
sition, we show that the firm offers a quantity dis-
count to myopic customers.

Proposition 5 (Myopic Customers). For myopic customers
(ρ → ∞), the solution to the turnpike equation is also unique:

a. When γ � 1, we have p̄ < (1 + k̄)f̄ and Δη̄wk �
μ[exp(−p̄/μ) + exp((a − p̄)/μ) + exp((a − f̄ )/μ)) + c < f̄ .

The prices satisfy f̄ � μ(1 + exp[(a − p̄)/μ] + exp[(a−
f̄ )/μ]) + c and p̄ � (1 + k̄)f̄ − k̄μ[1 − exp(−p̄/μ)].
b. When γ → 0 and k̄ � 1, we have f̄ � c + μ +

μW(exp[(a − c − μ)/μ]) and p̄� 2c+μ+μ[2+exp(−a/
μ)]W(exp[(a− c−μ)/μ])< 2f̄ , where W is the Lambert
W function.

In the dynamic logit model (γ � 1), the pass offers a
total discount of k̄μ[1 − exp(−p̄/μ)] compared with
buying the same number of individual items. Another
expression of the pass price is p̄ � f̄ + k̄{ f̄ − μ[1−
exp(−p̄/μ)]}, which suggests a two-part tariff: a lump-
sum fee f̄ and a constant per-unit charge f̄ − μ[1 − exp
(−p̄/μ)] that is lower than the lump-sum fee. As γ → 0,
the turnpike prices have a closed-form solution, and
we observe that the quantity discount still holds.
How does the forward-looking behavior affect the

optimal pricing policy? We begin with tractable
special cases by comparing the pricing policies for
fully strategic and myopic customers.

Proposition 6 (Comparison in Price and Demand). For
customers with the utility discount rate ρ, let f̄ρ denote
the turnpike individual price, π̄s

ρ the individual purchase
probability of nonpassholder customers, and π̄s

k,ρ the indi-
vidual purchase probability of passholders with k remaining
credits. Furthermore, let p̄ρ denote the turnpike pass price,
π̄p
ρ the pass purchase probability of nonpassholder cus-

tomers, and π̄r
k,ρ the redemption probability of passholders

with k remaining credits. The following results hold for
γ � 1:
a. f̄0 > f̄∞ and p̄0 > p̄∞, and
b. π̄s

0 < π̄s∞, π̄
p
0 > π̄

p
∞, π̄r

k,0 < π̄r
k,∞, and π̄s

k,0 > π̄s
k,∞ for

k � 1, . . . , k̄.

This proposition implies that compared with fully
strategic customers, myopic customers enjoy lower
prices in both individual items and passes. In fact, this
finding is not only restricted to γ � 1. Figure 5 shows
how the turnpike prices change in response to ρunder
different marginal cost levels, where γ � 0.8. Other
parameters are given by (k̄, λ, a, μ) � (3, 1, 0.5, 1). The
general trend in Figure 5, (a) and (b), is that both the

Figure 5. Turnpike Prices and Price Ratio vs. Discount Factor for Different Marginal Costs
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individual and pass prices are decreasing and then
stabilize as customers become more myopic (i.e., as ρ
increases). However, when ρ is small enough and
capacity is large enough, there exist some reversal
regimes where the individual price is increasing in ρ
(i.e., the firm may lower the individual price as cus-
tomers are approaching fully strategic). We also ob-
serve that both prices increase as the marginal cost
becomes higher. Figure 5(c) illustrates the general
presence of a quantity discount, which becomes more
prominent as customers become less strategic or the
marginal cost decreases. The degree of a quantity
discount also gradually stabilizes when customers
become more myopic.

Part (b) of Proposition 6 compares the choice prob-
abilities. Compared with fully strategic customers,
myopic nonpassholder customers are more likely to
purchase individual items and less likely to purchase
the pass. By contrast, myopic passholders are more
likely to redeem the credit and less likely to make in-
dividual purchases.

6. Capitalization on Strategic Behavior
Forward-looking behavior is known to hurt profit in
many settings (Aviv et al. 2009). It is also known that
the firm can use rationing strategies to induce early
purchase (Su 2007, Liu and van Ryzin 2008) and sub-
sequently capitalize on the forward-looking behavior.
Capitalization on strategic behavior also appears in
group buying (Marinesi et al. 2017) and loyalty pro-
grams (Chun andOvchinnikov 2018).Wefind that the
pass, which is a form of advance purchase, is another
mechanism of capitalizing on forward-looking behavior.

We first investigate the capitalization effect in the
turnpike. Note that the forward-looking behavior
drives customers’ expected utilities, which can in-
fluence the profit through choice probabilities and

then through the passholders’ population. Section
EC.17 in the online appendix presents a qualitative
analysis on how the marginal expected utility ΔŪk

influences the choice probabilities. It suggests that the
marginal utilities can have a counteracting impact on
the demand depending on whether the customers
have passes. Additionally, the choice probabilities alter
the steady-state population distribution, which may
also affect profit. Finally, the marginal utilities affect
prices and add another layer of complexity. Therefore, a
perturbation of the strategic behavior can cause a series
of complex chain reactions affecting profit. What is the
overall effect? To answer this question, we first com-
pare the turnpike profit rate of fully strategic cus-
tomers with that of myopic customers.

Proposition 7 (Comparison in Profit). Let R̄0 (respectively,
R̄∞) denote the turnpike profit rate for fully strategic (re-
spectively, myopic) customers. When γ � 1, we have R̄0 −
R̄∞ � λ( f̄0 − f̄∞) > 0, where f̄0 and f̄∞ are the turnpike in-
dividual prices for fully strategic and myopic customers,
respectively. Furthermore, R̄0 − R̄∞ is increasing in k̄.

Proposition 7 suggests that under the dynamic logit
choice model (γ � 1), the profit capitalized from
strategic behavior R̄0 − R̄∞ is equal to the difference
between individual prices, f̄0 − f̄∞, modulated by the
decision opportunity rate λ. As such, fully strategic
customers must generate a higher profit rate than
myopic customers because they pay a higher indi-
vidual price, as shown in Proposition 6. We note
further that both f̄0 and f̄∞ have closed-form expres-
sions, as given in Propositions 4 and 5, respectively.
Therefore, we can also write R̄0 − R̄∞ in closed form,
fromwhichwededuce that thepassofferingmorecredits
capitalizes more profit from the strategic behavior. Al-
though Proposition 7 concerns only the special case of

Figure 6. (a) Total Turnpike Profit Rate vs. ρ for Different γ; (b) Turnpike Profit Rate by Sources (γ � 0.4)
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γ � 1, the capitalization phenomenon is actually pres-
ent for general γ, as shown in the following theorem.

Theorem 2 (Capitalization on Strategic Behavior). The
profit R̄0 ≥ R̄∞ for 0 ≤ γ ≤ 1 and c � 0.

The capitalization phenomenon also exists when cus-
tomersarepartially strategic (i.e., 0 < ρ < ∞). Figure 6(a)
shows how the total turnpike profit rate changes in
response to the discount rate ρ for various values of γ.
Other parameters are specified as (k̄, λ, a, μ, c) � (2, 1,
0.5, 1, 0.05). We observe capitalization in all scenarios.
Note that both profit rate and the magnitude of
capitalization increase in γ. Figure 6(b) shows the
breakdown of profit by sources, from which we ob-
serve that as customers become more strategic, the
profit from individual items generally decreases, but
the profit from passes increases and compensates for
the decrease in individual profit; overall, strategic
behavior increases the total turnpike profit.

Passes capitalize on the forward-looking behavior
based on advance purchase, which can substantially
increase the profit by exploiting the customer’s un-
certainty about future valuations (Shugan and Xie
2000). Because the pass purchase time is separated
from the consumption time, customers are uncertain
about the valuation of the consumptionwhenmaking
the advance purchase; the valuation depends on the
customer’s future consumption state. For example,
the value of a multiday ski pass may depend on the
customer’s health and mood, unforeseen scheduling
conflicts, and weather condition. This uncertainty
favors the seller. Specifically, when customers make
their purchase decisions based on the expected utility
of future consumption, the seller can receive sub-
stantially more profit by advance selling.

When customers are more forward looking, they
explicitly account for a larger number of consumption
opportunities further into the future by discounting
them less. This contributes to an increased expected
value of the consumption opportunities associated
with the pass. Thus, more forward-looking customers
have a higher overall valuation of the pass. However,
their consumption state uncertainty is also higher in

absolute terms, and therefore, their information dis-
advantage compared with the seller also becomes
higher. Indeed, a customer who plans months ahead
faces more uncertainty than a customer who plans
days ahead. The point about information disadvan-
tage can be seen by first considering myopic cus-
tomers who consider only the value of the current
consumption opportunity. Because the purchase time
coincides with the consumption time, the seller is at a
disadvantage because he or she has less information
about customers’ valuation than the customers. This
information disadvantage makes it difficult to effec-
tively extract consumers’ surplus. By contrast, for
future consumption opportunities, customers them-
selves are uncertain about their future consumption
states, putting the seller in a relatively better position
with less disadvantage in terms of information as the
customers’ planning horizon expands. Rather inter-
estingly, Shugan and Xie (2000, p. 231) demonstrate
that “customers’ uncertainty allows the seller to charge
a higher price and sell to more potential customers.”
The capitalization is enhanced by the unobserved

heterogeneity in the customer population (Shugan and
Xie 2000), which creases a differentiation between the
pass and individual tickets. As described in Section 3,
theheterogeneity ismeasuredbyγ in the dynamic choice
model.When γ increases, we observe from Figure 6(a)
that the magnitude of capitalization also increases.
Although the capitalization effect is established in the

turnpike, it does not necessarily persist throughout the
selling horizon. Figure 7 displays the optimal revenue
rate trajectories over the entire selling horizon under
different levels of strategic behavior (a larger e−ρ
represents more strategic customers). We observe
that the strategic behavior improves the profit during
the early and middle stages of the horizon, but it may
hurt the profit near the end of the horizon. When the
selling horizon becomes short, the turnpike behavior
disappears, but the profit rate trajectories still exhibit
the capitalization effect in most of the planning horizon.
When it is closer to the end of the horizon, the con-
sumption times are generally also closer to the purchase

Figure 7. (Color online) Optimal Profit Rate over the Entire Horizon (λ, a, μ, c, γ, k̄) � (0.01, 2, 1, 0.1, 0.5, 2)
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times. In this case, customers are less uncertain about
their consumption states, and thus the advance pur-
chase becomes less beneficial to the seller. Note in
Figure 7 that the capitalization effect is particularly
strong in the nonturnpike regime at the beginning of
the horizon. This is so because most customers have
not yet purchased passes at this stage, so the market
size for passes is the largest. As the number of pas-
sholders increases to the turnpike level, the population
of potential buyers for passes shrinks, and hence the
profit rate becomes lower.

Although the capitalization effect disappears near
the end of the horizon, it is interesting to observe from
Table 2 that the total profit over the selling horizon is
still increasing as customers become more strategic,
even when the selling horizon is short. This is so
because the profit gains in the early andmiddle stages
are sufficiently large to compensate for the profit loss
near the end of horizon (see Figure 7).

We have seen that passes, as a form of advance
purchase, can capitalize on strategic behavior. Hence,
the firm may benefit from educating customers to
look forward and plan for consumption that is further
in the future. This can be implemented, for example,
by emphasizing the total amount of savings from
passes over a long period of time, such as showing
“save 40% per season” to customers.

7. Heterogeneity in the Profit Rate
In this section, we show that a passholder, while
enjoying a quantity discount, can generate more profit
than a nonpassholder customer in the turnpike, which
results in heterogeneity in the profit rate.

7.1. Excess Profit of Passes
Our analysis here is based on the revenue-recognition
principle inaccrual accounting (Antle andDemski 1989).
Under revenue recognition, the cash income of pass

sales cannot be counted as revenue until customers
redeem the credits. Consider a simple example with a
two-credit pass (k̄ � 1). When a nonpassholder cus-
tomer purchases the pass, he or she consumes the
first credit (with cash value f̄ ) immediately and keeps
the second credit (with value p̄ − f̄ ) for future re-
demption. The second credit revenue is not recog-
nized until the customer actually redeems the credit.
Thus, it is attributed to the passholder, whereas the
revenue from the first credit is attributed to the
nonpassholder customer.
When a decision opportunity arises, if the pas-

sholder redeems the credit (with probability π̄r
1), he or

she generates recognized revenue p̄ − f̄ . If the pas-
sholder purchases an individual item (with proba-
bility π̄s

1), he or she generates cash revenue f̄ . Taking
both together, and accounting for costs, a passholder
generates an expected profit rate of r̄1 ≜ π̄r

1(p̄ − f̄ − c) +
π̄s
1( f̄ − c) per opportunity. A nonpassholder customer

buys the pass with probability π̄
p
0, and only f̄ is rec-

ognized immediately, generating a profit f̄ − c. He or
she can also buy an individual item with probability
π̄s
0, generating the same amount of profit f̄ − c. There-

fore, the expected profit rate of a nonpassholder
customer is r̄0 ≜ (π̄p

0 + π̄s
0)( f̄ − c). If r̄1 � r̄0, then the

pass essentially shifts the future profit of individual
sales to the present, and all customers are homoge-
neous in the profit rate. But if r̄1 > r̄0, then the pas-
sholder generates an excess profit compared with the
nonpassholder customer, and the profit rate is het-
erogeneous across customers. Next, wewill show that
both situations can occur.
Theheterogeneity inprofit isdrivenby the excess profit

of passes, defined as the difference between the pass
price and the total opportunity costs of the pass.

Definition 1. The excess profit of passes (EPP) is defined
as epp ≜ p̄ − f̄ −∑k̄

k�1 Δη̄
w
k .

Table 2. The Optimal Expected Total Profit over the Entire Horizon (with the Same
Parameters as in Figure 7)

e−ρ T � 20 T � 50 T � 100 T � 200 T � 500 T � 1,000 T � 2,000

0a 0.2199 0.5336 1.0330 2.0009 4.8662 9.6313 19.1606
0.1 0.2200 0.5338 1.0334 2.0014 4.8667 9.6318 19.1613
0.2 0.2201 0.5341 1.0337 2.0018 4.8671 9.6324 19.1619
0.3 0.2202 0.5343 1.0341 2.0023 4.8677 9.6330 19.1626
0.4 0.2204 0.5346 1.0346 2.0029 4.8683 9.6338 19.1636
0.5 0.2206 0.5351 1.0352 2.0036 4.8692 9.6348 19.1648
0.6 0.2208 0.5357 1.0361 2.0048 4.8706 9.6363 19.1666
0.7 0.2212 0.5366 1.0376 2.0066 4.8727 9.6387 19.1696
0.8 0.2219 0.5385 1.0404 2.0103 4.8770 9.6435 19.1755
0.9 0.2233 0.5431 1.0484 2.0208 4.8895 9.6579 19.1933
1b 0.2264 0.5701 1.1544 2.3625 6.0440 11.9532 23.3929

aMyopic.
bFully strategic.
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By selling a pass, the firm earns a cash income p̄ but
forgoes the income of an individual sale f̄ , which
corresponds to the first use of the pass. In addition, it
gives away k̄ credits for future use, whose opportu-
nity costs are measured by the marginal shadow
prices Δη̄wk s. To calculate EPP, one deducts all op-
portunity costs—namely, f̄ and

∑k̄
k�1 Δη̄

w
k —from the

pass price p̄. The following proposition shows that
the sign of EPP fully determines the relative size of
r̄1 and r̄0.

Proposition 8. The EPP epp >�
<
0 ⇔ r̄1 >�

<
r̄0 for k̄ � 1.

When the EPP is zero, the firm essentially uses the
pass to recoup all opportunity costs, and as a result, a
passholder generates the same profit as a non-
passholder customer in the steady state. When the
EPP is positive, the pass not only recoups the op-
portunity costs but also creates an extra profit. When
the EPP is negative, the pass cannot even recoup the
opportunity costs, making a passholder generate less
profit. It is obvious fromProposition 8 that EPP drives
the heterogeneity in profit rate.

What determines the sign of the EPP? To this end,
we conduct a combination of analytical and numer-
ical studies for the case of k̄ � 1, which captures the
essence of the problem.

Theorem 3. For k̄ � 1, the following results hold:
a. When ρ � 0 (i.e., e−ρ � 1), we have epp � 0.
b. When γ → 0, we have epp → 0.
c. When ρ → ∞ (i.e., e−ρ → 0), we have the following:

i. epp > 0 if and only if 0 < γ < 1, and
ii. epp → 0 if γ � 1 or γ → 0.

d. When γ � 1, we have the following:
i. epp > 0 if and only if 0 < ρ < ∞ (i.e., 0 < e−ρ < 1),

and
ii. epp → 0 if ρ � 0 (i.e., e−ρ � 1) or ρ → ∞ (i.e.,

e−ρ → 0).

Figure 8(a) shows the relative percentage of the EPP
to the pass price (i.e., epp/p̄) for the case of k̄ � 1 under
different combinations of the discount factor e−ρ and γ.
Other parameters are specified as (λ, a, μ) � (3, 2, 1).
We observe that the EPP is small compared with the
pass price, accounting for less than 5% of p̄. But it is
nonnegative for all parametrization. We now examine
the four edges of the rectangle shown in Figure 8(a),
where each edge corresponds to a scenario listed in
Theorem 3.
1. The edge AB corresponds to the case of ρ � 0

(e−ρ � 1), in which customers do not discount future
utility and hence are fully strategic. Part (a) of Theo-
rem 3 suggests that the EPP is zero in this case, which
is clearly shown in Figure 8(a).
2. The edgeBC represents the case ofγ → 0. That is,

the unobserved idiosyncrasies with regard to the
choice between passes and individual items are per-
fectly correlated. Part (b) of Theorem3 suggests that the
EPP is also zero in this case, which is again consistent
with Figure 8(a).
3. The edge CD corresponds to the case of ρ → ∞

(e−ρ → 0), inwhich case customers do not value future
utility and hence are myopic. The choice model also
becomes static because all future utility terms become
zero. For this case, part (c) of Theorem 3 suggests a

Figure 8. (Color online) (a) The Percentage of EPP in the Pass Price (epp/p̄) and (b) the Ratio of Pass to Individual Price (p̄/f̄ )
w.r.t. the Discount Factor e−ρ and γ
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positive EPP except when γ → 0 or γ � 1, which can
be easily observed from both figures.

4. The edge DA corresponds to the dynamic logit
model in the econometrics literature (Rust 1994)—
namely, when γ � 1. Part (d) of Theorem 3 suggests
that a positive EPP is expected unless ρ → ∞ (vertex
D) or ρ � 0 (vertex A), as evident in both figures.

On the basis of Theorem 3 and the numerical ex-
amples, we have identified three situations with
zero EPP: (1) ρ � 0 (edgeAB), (2) γ → 0 (edge BC), and
(3) ρ → ∞, γ � 1 (vertex D), from which one can iden-
tify the following three drivers that jointly drive the EPP.

The first driver is the discount of future utility by
customers. If customers do not discount their future
utility, the firm should not offer a quantity discount in
passes. In this case, customers are homogeneous in
terms of their behaviors, and thus the EPP does not
arise. The second driver is the divergence or imperfect
correlation in unobserved idiosyncrasies with regard
to the choice between passes and individual items
among customers, which come from interindivid-
ual and intraindividual variations in preferences.
The third driver is the interdependence between the
choices of passes and individual items.More specifically,
a customer’s preference between the no-purchase al-
ternative and the pass depends on the attributes
of individual items (i.e., the third alternative).5 In
Figure 8(a), the independence occurs only in the sit-
uation represented by the vertex D—namely, when
customers are myopic (e−ρ → 0) and the unobserved
idiosyncrasies are independent (γ � 1).6

Note also that the EPP does not conflict with a
quantity discount. Compared with a nonpassholder
customer, a passholder can still generate a higher profit
rate while enjoying a quantity discount, as illustrated
in Figure 8 for the case of k̄ � 1, in which other pa-
rameters are identical to Figure 8(a). More specifi-
cally, Figure 8(a) shows that the EPP is nonnegative
for all combinations of ρ and γ, and Figure 8(b)
shows the presence of a quantity discount—namely,
p̄/f̄ < 2—for the same parameter combinations. There
is no quantity discount only when ρ � 0 (as shown by
edge AB), in which case the EPP is also zero. In fact, it

is easy to observe that the EPP is positive only when
the firm offers a quantity discount. In the following
proposition, we further prove the optimality of a
quantity discount in some special cases.

Proposition 9 (Quantity Discount). The following results
hold for k̄ � 1:
a. When ρ � 0, we have p̄ � 2f̄ .
b. When 0 < ρ < ∞, we have f̄ < p̄ < 2f̄ for both γ → 0

and γ � 1.

7.2. Composition of Profit
So far we have been focusing on the individual profit
rate. We now turn to the aggregated profit rate for the
entire customer population. The following theorem
shows threeways of breaking down the total turnpike
profit rate.

Theorem 4 (Composition of the Profit Rate). The turnpike
profit rate R̄ can be decomposed as follows:

R̄ � λw̄0 π̄
p
0 p̄− c
( )+ π̄s

0 f̄ − c
( )[ ]⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Nonpassholders′ cash profit

+λ
∑k̄
k�1

w̄k π̄
s
k f̄ − c
( )− π̄r

kc
[ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Passholders′ cash profit

(8)
� λw̄0 π̄

p
0 + π̄s

0
( )

f̄ − c
( )⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

Nonpassholders′ recognized profit

+ λ
∑k̄
k�1

w̄k π̄r
k
p̄ − f̄
k̄

− c
( )

+ π̄s
k f̄ − c
( )[ ]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Passholders′ recognized profit

(9)

� λr̄0⏟⏞⏞⏟
Baseline profit

+ λπ̄
p
0epp.⏟̅⏞⏞̅⏟

Excess profit
(10)

We interpret this theorem using an example of
two-credit passes (k̄ � 1). A straightforward decom-
position of the turnpike profit rate is based on cash
flows, as given in (8) and shown in the left half of
Figure 9(a): the profit can be split into two parts:
(1) λw̄1[π̄s

1( f̄ − c) − π̄r
1c] is the cash profit of passholders

purchasing individual items and redeeming credits,
and (2) λw̄0[π̄p

0(p̄ − c) + π̄s
0( f̄ − c)] is the cash profit

of nonpassholder customers purchasing passes or

Figure 9. Decomposing the Turnpike Profit Based on Revenue-Recognition Principle (k̄ � 1)
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individual items. The latter can be decomposed fur-
ther into two components.

One component, λw̄0(πp
0 + πs

0)( f̄ − c), as shown at
the bottom of Figure 9(b), is the profit of immediate
uses. It is related to the uses occurring immediately
after the purchase, made by pass buyerswho use their
first credits or individual buyers who use them right
after the purchases. Because the combined demand
rate is λw̄0(πp

0 + πs
0) and each customer brings a cash

profit f̄ − c, the total profit rate is thus given by
λw̄0(πp

0 + πs
0)( f̄ − c). Recall that r̄0 � (πp

0 + πs
0)( f̄ − c) is

the profit rate of an individual nonpassholder cus-
tomer given a decision opportunity. Therefore, the
total profit rate can also be written as λw̄0r̄0.

The other component,λw̄0π̄
p
0(p̄ − f̄ ), as shownon the

right half of Figure 9(a), is associatedwith future uses.
Here λw̄0π̄

p
0 is the pass demand rate, and (p̄ − f̄ ) is the

price prepaid by each customer. By the revenue-
recognition principle, it is considered a deferred rev-
enue, not recognized until customers redeem their
credits. Note that by the time these customers redeem
their credits, their status has changed to passholders.
We can thus imagine that each passholder pays an
amount p̄ − f̄ when he or she redeems the credit but
pays nothing when he or she purchases it. The re-
demption occurs at a rateλw̄1π̄r

1, and each redemption
recognizes (p̄ − f̄ ), so the recognized revenue rate is
λw̄1π̄r

1(p̄ − f̄ ), shown in the left part of Figure 9(b).
Note further that in the steady state, the pass purchase
and credit redemption are balanced (i.e., w̄0π

p
0 � w̄1πr

1);
therefore, the deferred revenue rate is also equal to the
recognized revenue rate.

Wehave seen from the preceding that under revenue
recognition, the deferred revenue can be attributed to
passholders. When a passholder redeems the credit, he
or she pays (p̄ − f̄ ), and the redemption incurs a cost c

to the firm. So the profit rate of pass redemption is
λw̄1π̄r

1(p̄ − f̄ − c), as shown at the center of Figure 9(b).
In addition, passholdersmay also buy individual items,
which generates an immediate profit of λw̄1π̄s

1( f̄ − c)
per unit of time, as shown at the top of Figure 9(b).
Combining the two sources, the passholder profit
rate is λw̄1[π̄s

1( f̄ − c) + π̄r
1(p̄ − f̄ − c)] (see Equation (9)),

which can be also written as λw̄1r̄1, where r̄1 is the
profit rate of an individual passholder given a de-
cision opportunity.
Finally, we have shown in Proposition 8 that a

positive EPP makes a passholder generate a higher
per-capita profit rate than a nonpassholder customer
counterpart in the steady state—namely, r̄1 > r̄0. In
light of this, a nonpassholder customer’s profit rate r0
can be considered as the baseline profit rate of an in-
dividual with a decision opportunity. A passholder
generates an excess amount of profit on top of the
baseline. Equation (10) in Theorem 4 shows that the
aggregated profit rate also consists of the aggregated
baseline rate λ(w̄0 + w̄1)r̄0 � λr̄0 (because the entire
population is normalized to 1), and the aggregated
excess profit λπ̄p

0epp, as shown in Figure 9(c).
Figure 10 shows how the relative percentage of

baseline (Figure 10(a)) and excess (Figure 10(b)) profit
rates vary with respect to the discount factor e−ρ and
the parameter γ, in which other parameters are spec-
ified as (c, k̄, λ, a, μ) � (0.01, 2, 1, 0.5, 1).We observe that
the percentages of baseline and excess profits are not
monotone in the level of strategic behavior. The ex-
cess profit reaches the maximum at an intermedi-
ate level of strategic behavior and tends to decrease
when customers are getting closer to fully strategic
or myopic. This observation echoes the findings in
Theorem 3.

Figure 10. The Percentage Composition of Turnpike Profit Rate w.r.t. e−ρ and γ
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8. Optimization of k̄
We have been focusing on the optimization of prices, but
thenumberof credits sold in thepass—namely, k̄—is also
a decision variable. Similar to prices, k̄ can be adjusted
over time. In this section, we consider the optimization of
either afixed k̄ or the k̄with a finite number of changes.

8.1. When k̄ Is Static
We first consider the special cases with fully strategic cus-
tomers andmyopic customers in the following proposition.

Proposition 10 (Optimal k̄).
a. The turnpike profit rate for fully strategic cus-

tomers (ρ � 0) is

R̄0 �λ μ + μW 2γ exp
a−μ− c

μ

( )[ ]{ }
×W 2γ exp

a−μ− c
μ

( )[ ]/
1+W 2γ exp

a−μ− c
μ

( )[ ]( )
,

which does not depend on k̄. The individual price f̄ is inde-
pendent of k̄, and the pass price p̄ is linearly increasing in k̄.
b. When γ � 1 and customers are myopic (ρ → ∞), it is

optimal to choose k̄ � 1 in the turnpike. Furthermore, f̄
is decreasing in k̄.

When customers are fully strategic (ρ � 0), the num-
ber of credits k̄ does not influence the firm’s profit.
When customers are myopic and γ � 1, the optimal k̄
is 1. In this case, offeringmultiple credits to themyopic
customers is not optimal. In practice, customers are
between myopic and fully strategic; numerical studies
suggest that there is a unique k̄ that maximizes the
profit rate. An example is shown in Figure 11(a) with
parameters specified as (γ, λ, a, μ, c) � (0.7, 6, 2, 1, 1.4).
We observe that the optimal k̄ decreases in ρ. That is,
the firm should offer fewer credits in the pass when
customers become less strategic. Indeed, customers
who are less forward looking are less likely to buy a

Figure 11. (Color online) Turnpike Profit Rate vs. the Number of Credits on Pass Under Different Levels of (a) Strategic
Behavior, (b) Marginal Cost, and (c) Heterogeneity

Note. Panel (d) shows the optimal k̄ versus horizon length.
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large number of credits in advance. Another obser-
vation is that the profit rate becomes less sensitive to
the number of credits when customers become more
strategic, in which case the optimization seems less
important. In the extreme case of ρ � 0, it is not
necessary to optimize k̄ because it has no impact on
the profit rate.

Proposition 10 also suggests that the individual
prices can be coupledwithwhat is offered on the pass,
which is a key feature of the joint pricing. Specifically,
if more credits are offered on the pass (i.e., k̄ in-
creases), then the individual turnpike price should be
lower for myopic customers. However, this coupling
disappearswhen customers are fully strategic, inwhich
case the optimal individual price f̄ becomes indepen-
dent of k̄, and the pass price becomes linear in k̄.

Figure 11(b) shows that both the turnpike profit rate
and the optimal k̄ decrease in the marginal cost c. That
is, when the marginal cost is lower, more credits
should be included in the pass. From this observation,
the firmmay use the case of zero marginal cost to find
an upper bound for the optimal number of credits.
Parameters for this example are (γ, λ, a, μ, ρ) � (0.7,
6, 2, 1, 0.0001). In Figure 11(c), we observe that the
optimal k̄ is increasing in γ. That is, the pass should
offer more credits when the customer preferences
become more heterogeneous. Parameters are (λ, a,
μ, ρ, c) � (1, 2, 1, 0.001, 0.1).

Figure 11(d) shows that the optimal k̄ is increasing
in the horizon length T, in which we maximize the
total profit over the selling horizon, with parameters
(γ, a, μ, ρ, c) � (1, 2, 1, 0.01, 1). The optimal k̄ converges

to the turnpike optimal settingwhen T is sufficiently large.
Theconvergence isgenerallyslower for lowerarrival rateλ.

8.2. When k̄ Changes a Finite Number of Times
The seller can dynamically set k̄ in conjunction with
prices over time. Computing the corresponding op-
timal policy is challenging because one has to jointly
optimize the value of k̄ together with the times at
which it changes. Nevertheless, insights can be gained

Figure 12. (Color online) Optimal Price Trajectories with Fixed k̄ � 2 (in Blue Online) vs. Decreasing k̄ (in Red Online) in the
Short Horizon (Left Panel) and Long Horizon (Right Panel)

Note. Other parameters are (λ, a, μ, γ, ρ) � (0.01, 2, 1, 0.9, 0.05).

Figure 13. Optimal Change Time for k̄ Corresponding to
Different Horizon Lengths T (Upper Panel) and the
Maximum Arrival Rates λ (Lower Panel)

Note. The parameters are (a, μ, γ, ρ) � (1.5, 1, 1, 0.001).
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from the simple cases where k̄ is allowed to change
once.We describe the correspondingmodel in Section
EC.27 of the online appendix.

In Figure 12, we compare the optimal price trajec-
tories under a fixed k̄with those under a decreasing k̄.
The change in k̄ causes discontinuities in the price
trajectories; the pass price jumps downward signifi-
cantly, whereas the individual price jumps slightly
upward.When the horizon is sufficiently long (see the
right panel of Figure 12), the optimal prices exhibit
piecewise turnpike property: they stay close to the
steady states except near the change time and the end
of the horizon.

The change time can also be optimized. A numer-
ical example is presented in Figure 13, in which we
enumerate through different combinations of change
time and k̄s (before and after the change) to maximize
the total profit over the horizon T. Each vertical line in
the upper panel represents the relative location of the
optimal change time in the selling horizon with a
specific length T. As the horizon becomes longer, we
observe that the optimal change time gets closer to the
end of the horizon. This example suggests that the
turnpike property may still emerge when prices and k̄

are both fully dynamic. When the horizon is long
enough, the optimal k̄ stays at the corresponding
optimal turnpike value (which is 2 in this example) for
most of the time. Note that the arrival rate λ also plays
an important role, as shown in the lower panel of
Figure 13. When λ is smaller, the optimal change in k̄
happens earlier. For a ski resort where customers ski
once a month on average, it may be optimal to reduce
k̄ in the middle of winter. But for an outdoor swim-
ming poolwhere customers visit five times amonth, it
is probably optimal to fix k̄ in most of the summer and
only decrease it near the end of the summer.
When k̄ changes multiple times, as shown in

Figure 14, the optimal price trajectories may exhibit
turnpike behavior when the changes are far apart,
except near the end of horizon (see the left panel
of Figure 14). Using the turnpike price during the
corresponding time windowmay provide a reasonable
approximation to theoptimalprice trajectories.However,
the turnpike behavior disappears when the selling ho-
rizon is short (see the right panel of Figure 14), in which
case the optimal prices can be continuously changing
and lie below the turnpike prices because the horizon
is too short to allow full utilization of the pass.

Figure 14. (Color online) Optimal Price Trajectories When k̄ Undergoes Multiple Changes

Note. The horizontal dashed lines represent turnpike pass prices for different k̄, and the vertical dashed lines represent the change times.

Figure 15. (Color online) An Example of Nonstationary Turnpike with Regime Shifts
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9. Summary and Discussion
We consider joint pricing of passes and individual
items in the face of rational customers who strategize
on not only purchases but also subsequent redemp-
tion and renewals. Although the problem appears
rather complex, the optimal pricing policy has a
surprisingly simple steady-state component, which
lends itself to formal mathematical analysis.

We showed that passes may encourage consump-
tion by offering a quantity discount, as long as cus-
tomers are not fully strategic. They also allow the firm
to benefit from strategic behavior by exploiting the
customer’s uncertainty about future consumption.
Under the revenue-recognition principle, the revenue
of advance selling is attributed to passholders, who
can generate a higher per-capita revenue rate than
nonpassholder customers. This excess profit is closely
related to the level of the strategic behavior, diver-
gence in customer idiosyncrasies, and the interde-
pendence between the choices of passes and indi-
vidual items.

We have assumed a stationary environment in this
paper. For example, the average valuation of each
consumption is assumed to be fixed, which helps to
establish the turnpike property. In reality, however,
the average valuation is subject to change. Figure 15(a)
illustrates a scenario with a nonstationary valuation,
where at has two regime shifts in the course of sales.
The corresponding optimal price trajectories are
shown in Figure 15(b), which exhibit a piecewise
turnpike property. It is reasonable to speculate that
when the regime shifts are not frequent, we can still
expect the steady state occupying a significant por-
tion of the sales horizon, where most conclusions
drawn from the turnpike equations in this paper still
hold.

Important directions of further research include
using passes as a competitive tool, pricing passeswith
rolling expirations, and large-scale network pass pricing
problems. Themodeling framework andfindings of this
paper can also motivate and inform further studies that
involve the advance purchase of multiunit products.
Because the dynamic choice model for the strategic
behavior is deeply rooted in econometrics and admits
maximum-likelihood estimation, it can be feasible to
conduct empirical testing and parameter estimation
based on our model. Finally, this paper has only ex-
amined a settingwhere the seller can credibly commit to
a price sequence. In general, thismay not always be true
in practice—in particular, when the effects of indi-
vidual customer purchases have a significant impact
on the state of themarket. Yet it is possible that a state-
invariant pricing policy may be asymptotically op-
timal. It is an interesting research question to identify
conditions the market must satisfy for this to hold.
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Endnotes
1A straightforward mathematical consequence of this theorem is the
uniqueness of the solution to the initial value problem for the pop-
ulation. Indeed, because the solution to the utility equations (2) is
unique, the choice probabilities are also uniquely determined, and the
population equations can be viewed as nonstationary linear differ-
ential equations.
2 It is easy to see that Ukt depends on ft because ft enters the equation
forUkt directly. Note that the pass price pt drives the dynamics ofU0t,
which, in turn, drives U1t,U2t, . . .,U(k−1)t in sequence. When U(k−1)t
enters the equation forUkt, it also carries the influence of pass price pt.
3 In static multinomial logit (MNL) models, the probability ratio of a
pass over an individual item depends only on the attributes of these
two alternatives. The dynamic logit model, however, does not have
this property because the probability ratio π

p
0t/π

s
0t depends on

ft − pt +U0t −Uk̄t, in which bothU0t andUk̄t depend on the attributes
of other alternatives.
4Our problem can be viewed as a Stackelberg game where the firm
leads by posting the price paths and customers respond to the price
paths as the followers. Each customer is free to rationally adjust
choices at each point in time. Nevertheless, because an individual
customer is infinitesimal, he or she cannot affect the state of the game.
Furthermore, customers do not coordinate their actions, and as a
result, the trajectory of the system remains effectively determined by
the firm’s pricing policy. Stated formally, this is reflected by the
uniqueness of solutions to the differential equations governing the
trajectory of the system for a given pricing policy (see Theorem 1).
From the firm’s point of view, the problem is that of the optimal
control of the system governed by the ordinary differential equations.
Such control problems obey the principle of optimality, and the
resulting optimal pricing policy is time consistent.
5 If the pass and individual ticket are two independent alternatives,
then the pass price can be optimized as an independent new product
after adjusting for the opportunity cost. By symmetry, the optimality
equations for both alternatives become essentially identical. More
specifically, imagine a new product whose price is the pass price net
the shadow prices of credits p̄ −∑Δη̄wk . It must satisfy the optimality
condition p̄ −∑Δη̄wk � c + μ + α in (EC.53) of the online appendix.
Note that the optimality condition for the individual price is f̄ �
c + μ + α in (EC.55) of the online appendix, which has an identical
right-hand side. Therefore, p̄ −∑Δη̄wk � f̄ at optimality, implying no
EPP. As a result, the passholder’s turnpike profit becomes identical to
the nonpassholder customer’s.
6 In this special case, the choice is represented by a multinomial logit
model with the IIA property. But for strategic customers (i.e., ρ < ∞),
the pass and individual alternatives are dependent even when γ � 1
(Rust 1994).
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