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We revisit the joint inventory and pricing problem with backlogging and positive lead time, and ask, “What

is the value of dynamic pricing?” While it is intuitive that dynamic pricing can yield a better expected profit

than the best Fixed Price (FP) policy because the former is more flexible than the latter, the magnitude of

this improvement is not well understood. In this paper, we shed partial light on this question by focusing

on the impact of delivery lead time in a setting with a linear purchase rate and a Normal-like demand. We

analytically derive an upper bound for the expected profit under the best FP policy (i.e., the policy that

applies the optimal sequence of fixed prices, which may not be stationary over time, in combination with the

best adaptive replenishment policy) and also a lower bound for the expected profit under the optimal joint

inventory and pricing policy. Under a mild assumption, we show that the expected profit under the best

FP policy decays exponentially in the length of lead time and, for all sufficiently large lead times, grows at

most logarithmically in the length of the selling horizon, whereas the expected profit under the optimal joint

inventory and pricing policy grows linearly in the length of the selling horizon regardless of the length of lead

time. These results hold even in the setting where demand variability is smaller than its mean, which is in

contrast to the well-known result in the Revenue Management (RM) literature regarding the near-optimality

of the best FP policy in such a setting. More precisely, whereas in the aforementioned classic RM setting,

dynamic pricing has been shown to only capture the second-order magnitude of the optimal revenue, in the

presence of lead time and holding cost, dynamic pricing is sometimes needed even to capture the first-order

magnitude of the optimal profit. This highlights the necessity of dynamic pricing in such a setting.

1. Introduction

It is known in the Revenue Management (RM) literature that when demand variability is (asymp-

totically) smaller than its mean and demands across different periods are independent given prices,

the best Fixed Price (FP) policy under which the prices applied at all periods are simultaneously

decided at the beginning of the horizon is asymptotically optimal as mean demand grows large

(e.g., Gallego and Van Ryzin 1994, 1997). In other words, in such settings, the best FP policy

already captures the first-order magnitude of the optimal revenue, and dynamically adjusting the
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prices over time only contributes to capturing the second-order magnitude of the optimal revenue

(e.g., Jasin 2014, Chen et al. 2015, Lei et al. 2018, Balseiro et al. 2023).

In this paper, we revisit the classic joint inventory and pricing problem with backlogging and

positive lead time and ask whether the same insight also holds for this setting. Note that, in

contrast to the asymptotic analysis in the classic RM setting in which the performance of the best

FP policy is largely determined by the magnitude of mean demand in each period, in the joint

inventory and pricing setting, both the mean demand and lead time can be “large”. Thus, it is

important to understand the performance of FP policy as a function of not only mean demand but

also lead time, which is the focus of this paper. More concretely, let m denote the mean demand

in each period, and let L and T denote the length of lead time and the length of selling horizon,

respectively. We are interested in understanding the performance of the best FP policy in the

setting where all three parameters m, L, and T can simultaneously grow large. We derive an upper

bound for the expected profit under the best FP policy and also a lower bound for the optimal

expected profit. Our bounds highlight the non-trivial impact of lead time in the joint inventory

and pricing setting, which underscores the need for dynamic pricing.

1.1. Our results and contributions

For tractability, in this paper, we only focus our analysis on the setting with a linear purchase rate.

We also further assume that the randomness in demand is captured by a symmetric truncated

Normal random variable to allow us to derive an explicit characterization of the bounds. Under a

mild assumption, our main results are twofold:

1. We show that the expected profit under the best FP policy (i.e., the policy that applies the

optimal sequence of fixed prices in combination with the best adaptive replenishment policy)

decays exponentially in the length of lead time. Moreover, for all sufficiently large lead times,

the expected profit under the best FP policy grows at most logarithmically in the length of

the selling horizon. This is in contrast to the results in the RM setting in which the expected

revenue under the best FP policy is linear in the length of the selling horizon.

2. To better highlight the value of dynamic pricing, we also show that the expected profit under

the optimal joint inventory and pricing policy is linear in the length of the selling horizon

regardless of the length of lead time. We do this by analyzing a simple policy that fixes the

order quantities for all periods at the beginning of the horizon but dynamically adjusts the

price over time. We prove that the expected profit under this policy is linear in the length of

the selling horizon. We do not claim that the proposed policy is near-optimal. Its construction

merely serves the purpose of showing that the expected profit under the optimal joint inventory

and pricing policy is linear in the length of the selling horizon.
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To the best of our knowledge, our work is the first in the literature that explicitly characterizes

the benefit of dynamic pricing as a function of both mean demand and lead time. Indeed, as will

be discussed shortly below, although several existing papers in the joint inventory and pricing

literature have highlighted the value of dynamic pricing to a certain extent, they do not provide

a rigorous analysis by analyzing what can be achieved by the best FP policy, which is the key

contribution of our paper. In addition to providing theoretical bounds, our results also provide an

important insight that, in the presence of holding cost, the performance of the best FP policy can

be very sensitive to the length of lead time.

From the technical perspective, deriving an upper bound for the expected profit under the best

FP policy in the aforementioned joint inventory and pricing setting turns out to be not trivial

since, for any given sequence of fixed prices, which may not be stationary, we need to take into

account the impact of the best replenishment policy on expected profit. Although the structure of

the optimal replenishment policy for a given FP policy is known (i.e., it is a base-stock policy; see,

e.g., Karlin 1958), directly utilizing this structure in our analysis is not easy. Thus, in this paper,

we take a different route and develop a series of approximations to derive an upper bound.

1.2. Brief literature review

Our work in this paper is related to both the RM literature and the joint inventory and pricing

literature. We discuss them in turn below.

One well-known result in the RM literature concerns the asymptotic optimality of the best FP

policy in the setting where demand variability is (asymptotically) smaller than its mean; this type

of result is usually proved in the context of Poisson or Bernoulli demand (see, e.g., Gallego and

Van Ryzin 1994, 1997, Jasin 2014). In the last two decades, this insight has served as a cornerstone

of much research in the RM literature. For example, Jasin (2014), Chen et al. (2015), Lei et al.

(2018), Lei and Jasin (2020), and Chen et al. (2023a) developed dynamic pricing policies that use

FP policy as the baseline control. Also, Besbes and Zeevi (2009, 2012), Keskin and Zeevi (2014),

Besbes and Zeevi (2015), Chen et al. (2019), and Chen et al. (2021a) developed joint learning and

pricing policies with the goal of learning the best FP policy. This list is far from exhaustive, and

we refer interested readers to Den Boer (2015) for a recent overview of the field. In a nutshell, the

fact that a simple FP policy is asymptotically optimal has made many RM and pricing-related

problems analytically tractable. Not only FP policy can be used as a baseline for developing more

sophisticated policies, it is sometimes sufficient to simply focus on optimizing and/or learning the

best FP policy, which is practically convenient, especially for large-scale applications.

As for the joint inventory and pricing literature, much of the focus of this literature has been

on trying to characterize the structure of the optimal policies. However, with the exception of the
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setting with zero lead time, the optimal policies for various joint inventory and pricing problems

are still largely unknown (e.g., see Chen et al. 2021b for an overview). Recently, there have been

some attempts to develop heuristic policies for joint inventory and pricing problems with positive

lead time. For example, Bernstein et al. (2016) considered a backlog model and developed a simple

policy that combines a base-stock inventory policy with a myopic pricing policy. Chen et al. (2023b)

considered a backlog model with a positive lead time and showed that a constant-order policy, in

combination with a dynamic pricing policy, is asymptotically optimal in the regime of a long lead

time. Liang et al. (2020) considered a lost sales model with a Binomial/Poisson demand in each

period and the possibility that each purchase might be returned in a future period, and developed

a dynamic pricing policy that can be combined with a simple fixed replenishment policy. They

showed that the policy is asymptotically optimal when the mean demand is large, with a loss bound

that is smaller than the standard square-root loss and is independent of lead time.

While the above papers highlighted the value of dynamic pricing to a certain extent (e.g., Bern-

stein et al. (2016) numerically showed that the value of dynamic pricing increases with lead time

whereas the policies developed in Chen et al. (2023b) and Liang et al. (2020) do not utilize any

form of adaptive replenishment policy at all and only rely on dynamic pricing to balance supply

and demand over time, which suggests its power), none provided a rigorous analysis on the funda-

mental value of dynamic pricing by analyzing what can be achieved by the best FP policy. As we

show in this paper, the analysis of the best FP policy turns out to be non-trivial. To the best of our

knowledge, the only paper in the joint inventory and pricing literature that analytically derived a

bound for the performance of the best FP policy is Lei et al. (2022). However, they considered a

model with zero lead time and the complexity in their model comes from the inventory allocation

decisions in the one-warehouse multi-store setting. Our work complements Lei et al. (2022) by

analyzing the performance of the best FP policy in the presence of positive lead time.

1.3. Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we discuss the model. In Section

3, we present our main results and discuss their insights. Section 4 is dedicated to the analysis of a

lower bound for the optimal profit and Section 5 is dedicated to the analysis of the best FP policy.

Finally, in Section 6, we conclude the paper. Unless otherwise noted, all proofs and the remaining

details of the analysis can be found in the Online Appendix.

2. Model

We consider a backlog inventory model with a positive lead time L≥ 1 and a finite selling horizon

of T periods (we assume L+1≤ T ). Let It denote the starting inventory level at the beginning of
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period t, before the scheduled replenishment arrives, and let Xt denote the order quantity placed in

period t, which will arrive L periods later at the beginning of period t+L. For convenience, we will

also use Qt =Xt−L to directly denote the order quantity that arrives in period t. Upon observing

It and Qt, at the beginning of period t, the firm decides the new order quantity Xt and the price

pt to be applied during the period. We assume for simplicity that I1 = 0; moreover, all orders that

are scheduled to arrive in periods 1 to L are placed before the horizon begins (hypothetically, at

the beginning of period 0).

2.1. Demand model

We assume a stylized continuous multiplicative demand model:

Dt(pt,m, θ) =Mt(m,θ)λ(pt),

where λ(pt)∈ [0,1] is the purchase rate under price pt and Mt(m,θ) is a random variable denoting

the random market size in period t. (The multiplicative demand model is widely used in the

inventory literature; see, e.g., the discussions in Chen et al. 2021b.) For analytical tractability, we

assume that λ(pt) is linear, specifically, λ(pt) = 1− pt. We also assume that Mt(m,θ)’s are i.i.d

random variables, which are distributed as the projection of i.i.d Normal random variables with

mean m and standard deviation mθ on the interval [0,2m]. That is, we have

Mt(m,θ) =d Proj[0,2m][Nt(m,mθ)].

We truncate the Normal random variable Nt(m,mθ) on the left at 0 because market size cannot

be negative. As for the truncation on the right at 2m, it is for technical convenience, so Mt(m,θ)

is a symmetric random variable and we can interpret m as the mean market size. (Note, however,

whether we truncate the Normal random variable on the right or not, will not change the insights of

the paper. Indeed, as shown in Section 5, as long as m is sufficiently large, we can essentially ignore

the projection operator in the definition of Mt(m,θ) when deriving the bounds for FP policy.) The

parameter θ captures the magnitude of market variability. We make the following assumption:

Assumption 1. θ ∈ (−∞,1).

That is, θ can be any number that is strictly smaller than 1. This assumption is for analytical

tractability; the setting θ > 1 is not easy to analyze and might require different technical arguments.

Note that when θ is small, demand is less variable and, when θ is close to 1, demand becomes more

variable. However, in all cases, as θ < 1, demand variability is smaller than its mean.
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2.2. The optimization problem

The firm’s objective is to solve the following dynamic joint inventory and pricing problem:

v∗ := maxπ∈Π E

[
T∑

t=1

pπt ·Dt(p
π
t ,m, θ)−

T∑
t=1

G
(
Iπt +Xπ

t−L −Dt(p
π
t ,m, θ)

)]
(1)

s.t. Iπt+1 = Iπt +Xπ
t−L −Dt(p

π
t ,m, θ) ∀ t,

Iπ1 = 0, Xπ
t ≥ 0, pπt ∈ [0,1] ∀ t,

where G(x) = h · (x)+ + b · (−x)+ is the usual Newsvendor cost function, h > 0 is the per period

per unit holding cost, b > 0 is the per period per unit backlog cost (we assume b≥ h), and Π is

the set of all feasible non-anticipating policies. We use the superscript π as a reference to policy π.

However, whenever not needed, we will often drop this superscript from all notations for simplicity.

In the above model, we have assumed that the unit ordering cost is zero. This is for analytical

convenience and is sufficient for our purpose in this paper. The presence of a (linear) ordering cost

is not difficult to handle and will not change the insights of our analysis. (Indeed, it is common in

the literature to assume zero ordering cost, e.g., see the discussions in Chen et al. 2021b.)

Note that we can also alternatively express optimization (1) using the standard Dynamic Pro-

gram (DP) formulation. The DP formulation is particularly useful for the purpose of studying the

structure of the optimal policy of (1). However, since we will not be using this formulation in our

analysis, we do not present it here. We refer readers who are interested in the DP formulation of

optimization (1) to some papers in the literature (see, e.g., Federgruen and Heching (1999) and

the papers listed in Chen et al. (2021b)).

Asymptotic analysis. Motivated by the asymptotic analysis in the RM literature, our analysis

in this paper will also focus on the setting where the mean demand is sufficiently large, which is

useful for analytical tractability. Specifically, for concreteness, we will assume the following:

Assumption 2. T (h+ b)≥ 1 and (h+ b)(T +1)3m1/2 exp
{
− 1

18
m2(1−θ)

}
≤ 1.

The condition T (h+ b)≥ 1 is quite mild as we anticipate that, in practice, the value of either

T or b is not too small. As for the second condition, recall that we are interested in studying the

performance of the best FP policy in a setting where both the mean demand and lead time could

simultaneously be large. One way to do this is to directly express L and T as increasing functions

of m. For example, we can set T =mn′
and L=mn for some n′ >n. For this instance, as long as m

is sufficiently large, the second condition in Assumption 2 is immediately satisfied. In general, the

second condition in Assumption 2 allows both L and T to grow up to exponentially in m. Thus,

as long as m is sufficiently large, both L and T can also be quite large. For the purpose of our

discussions in this paper, we will not need to explicitly express L and T as functions of m since

our bounds already explicitly depend on these variables.
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2.3. Additional notations

Let r(p) := pλ(p) = p · (1− p) denote the revenue rate under price p. To express the direct depen-

dency of revenue rate on purchase rate instead of price, by abuse of notation, we will often write

r(λ) := λP(λ) = λ · (1−λ), where p(λ) = 1−λ is the inverse of λ(·). We will also use vπ to denote

the expected profit under policy π.

3. Statements of Results and Discussions

In this section, we present the formal statements of our results and discuss their implications.

The analysis of these results can be found in the next two sections. For brevity, throughout the

remainder of this paper, we will simply denote the best FP policy as BFP.

3.1. Statement of Results

Our results in this paper are presented below.

A lower bound of the optimal expected profit (Theorem 1 in Section 4). Suppose that

Assumptions 1 and 2 hold. There exists a policy π̄ such that

v∗ ≥ vπ̄ ≥ 3

16
Tm− (h+ b)Tmθ − 2. (2)

The limitation of FP policy (Theorem 2 in Section 5). Suppose that Assumptions 1 and 2

hold. Then, the expected profit under BFP is of order

O

(
m ·
(
logT +

m2(1−θ)

ξ2
+T exp

{
− ξ2

m2(1−θ)
L

}))
, (3)

where ξ = hΦ−1(b/(h+ b))/2. Moreover, the constants hidden inside the Big-Oh notation are inde-

pendent of all problem parameters (i.e., independent of m, L, T , θ, h, and b).

3.2. Discussions

Lower bound for the optimal expected profit. We start by discussing the lower bound in

(2). Note that this bound is linear in m, which is not surprising since the mean market size in each

period is m. In particular, the bound is independent of L and is linear in T , which tells us that

the optimal expected profit is linear in the length of the selling horizon. The proof of this result

utilizes a construction of a feasible policy π̄ that places a constant order quantity in each period

and applies a simple dynamic pricing policy to carefully control the impact of historical demand

uncertainties on future inventory trajectory (in terms of ordering policy, π̄ shares the same spirit

as the policies analyzed in Chen et al. (2023b) and Liang et al. (2020)). We do not claim that π̄ is
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near-optimal. Its construction merely serves the purpose of showing that the expected profit under

the optimal joint inventory and pricing policy is linear in the length of the selling horizon, which

is useful for assessing the value of dynamic pricing.

Upper bound for BFP.We now discuss the upper bound for the expected profit under BFP. Note

that, when L is very small, the bound is linear in T ; as L grows, the bound decays exponentially

in L; and, eventually, when L > (m2(1−θ)/ξ2) · logT , the bound becomes independent of L. In

particular, for all L> (m2(1−θ)/ξ2) · logT (i.e., sufficiently large L), the bound is roughly of order

m · (logT +m2(1−θ)/ξ2), which only grows logarithmically in T and is in stark contrast with the

lower bound for the optimal profit in (2), which is linear in both m and T .

The bound in (3) also reveals an interesting insight regarding the impact of demand variability

on expected profit. Specifically, the larger the value of θ, the smaller the term m2(1−θ)/ξ2 in the

bound and the larger the decay rate. This means that the expected profit under BFP becomes

more sensitive to the length of lead time as demand variability grows (as long as θ < 1).

Finally, it is worth noting here that holding cost is the main reason why BFP only has a relatively

small expected profit that grows logarithmically in T for large L even in the setting where demand

variability is smaller than its mean. If h = 0 (i.e., there is no holding cost), it is not difficult to

construct a feasible FP policy that guarantees an expected profit that is linear both in m and T .

For example, consider a policy that sets pt = 1/2 (which is the unconstrained optimizer of r(p))

for all t, Q1 =m/2+mθ
√
T logmT , and Qt =m/2 for all t > 1. We can view mθ

√
T logmT as the

safety stock for the system, which is more than sufficient to guarantee that stock-out will never

happen throughout the horizon with a high probability. It is not difficult to see that this policy is

asymptotically optimal with an expected loss at most of order
√
mT , similar to the performance of

FP policy in the RM literature. If h> 0, however, the performance of the best FP policy becomes

sensitive to lead time. This is so because, even when demand variability is small (i.e., θ < 1), the

system still needs to carry enough safety stock to hedge against cumulative demand uncertainties

over L periods, which potentially incurs a large cumulative holding cost. As a consequence, as L

keeps growing, the cumulative holding cost might grow too large to the point that it is no longer

profitable to set the prices in a way that generates demand across all periods. Instead, it might

be better to simply generate most of the demands in the last few periods and reduce demand in

earlier periods by setting high prices during these periods. This strategy allows us to cut down

the amount of needed safety stock, which in turn reduces the total holding costs. In Section 5, we

show that this is indeed the property of the optimal fixed prices under our proxy model (see the

monotonicity of purchase rates in Lemma 3 and Figure 1).
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4. A Lower Bound for the Optimal Policy

In this section, we derive a lower bound for v∗. We do this by introducing a feasible policy π̄ and

derive a lower bound for vπ̄. Since v∗ ≥ vπ̄, a lower bound of vπ̄ is immediately a lower bound of

v∗. As noted earlier in the introduction, we do not claim that the policy π̄ is near-optimal. Its

construction only serves the purpose of showing that the expected profit under the optimal joint

inventory and pricing policy is linear in the length of the selling horizon.

4.1. The definition of π̄

The definition of π̄ is given below.

Policy π̄

Let ∆0 := 0, δ−1 := 0, δ0 := 1. For each t= 1, . . . , T , do:

1. Set Qt =
m
2

2. Calculate ∆t−1 :=Mt−1(m,θ)−m

3. Calculate δt−1 = 1−Proj[− 1
3 ,

1
3 ]

(
∆t−1

m

)
δt−2

4. Set λt =
1
2
δt−1 and pt = p(λt)

Note that the order quantity Qt is fixed at the beginning of the horizon, i.e., the replenishment

policy under π̄ is not adaptive. As for the variable ∆t−1, recall that E[Mt−1(m,θ)] =m. Thus, ∆t−1

represents the randomness in market size in period t− 1.

The intuition behind the design of π̄ is as follows. If θ is very small (i.e., demand is essentially

deterministic), then π̄ yields λt ≈ 1
2
, which is close to optimal since 1

2
is the unconstrained optimizer

of r(λ). If, however, demand is random, prices have to be dynamically adjusted to minimize the

impact of past randomness on future states of the system. Our update formula for λt is motivated

by the following logic. We want to set λt such that the following equation is satisfied:

mλt =
m

2
− [Dt−1(λt−1,m, θ)−mλt−1] =

m

2
−∆t−1λt−1, (4)

which yields the following formula:

λt =
1

2

(
1− 2∆t−1

m
λt−1

)
. (5)

In (4), the excess (which could either be positive or negative) demand in the previous period is

“corrected” in the current period. The projection operator in the definition of π̄ is added to make

sure that the update formula for λt is always feasible (i.e., λt ∈ [0,1] for all t), since directly applying

(5) may be infeasible. The feasibility of λt under π̄ is not difficult to verify. Let ϵt =Proj[− 1
3 ,

1
3 ]

(
∆t
m

)
.

For t≥ 1, we can alternatively express δt as follows:

δt = 1−
t−1∑
k=0

(−1)k ·

(
t∏

s=t−k

ϵs

)
.
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Since |ϵt| ≤ 1
3
for all t, by comparison with a geometric series, we must have δt ∈ [ 1

2
, 3
2
] for all t.

Thus, λt ∈ [ 1
4
, 3
4
]⊆ [0,1] is feasible for all t.

4.2. A lower bound of vπ̄

The following theorem gives us a lower bound for the expected profit under ϕ̄.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then,

v∗ ≥ vπ̄ ≥ 3

16
Tm− 3(h+ b)Tmθ.

Note that the bound in Theorem 1 is independent of L. Since θ < 1, the bound is essentially of

order Θ(Tm), which is linear in both T and m.

5. An Upper Bound for the Best Fixed Price Policy

In this section, we derive an upper bound for the expected profit under BFP. Under an FP policy,

the prices at all periods are decided simultaneously at the beginning of the horizon whereas the

replenishment policy itself can be adaptive. Directly evaluating the expected profit under BFP is

not easy since we need to optimize both the sequence of fixed prices and the adaptive replenishment

policy. Thus, our approach is to derive an upper bound for vBFP through a series of upper bounds.

Since λt = λ(pt) = 1− pt is invertible in pt, we will directly use λt as the decision variable. Let

λ⃗= (λ1, . . . , λT ). In this section, we proceed as follows:

1. In subsection 5.1., we derive a deterministic upper bound for vBFP , i.e., we show that

vBFP ≤ max
λ⃗∈[0,1]T

HFP (λ⃗)

for a deterministic function HFP (λ⃗).

2. In subsection 5.2, we study the properties of the maximizer of HFP (λ⃗), which we denote as

λ⃗FP . We show that either λFP
t = 0 for all t or λFP

t > 0 for all t and, moreover, we also have

λFP
s ≤ λFP

t for all s≤ t (i.e., λ⃗FP is monotonically non-decreasing over time).

3. In subsection 5.3, we bound HFP (λ⃗) with a more analytically tractable function H̃FP (λ⃗) using

the monotonicity property of λ⃗FP derived in subsection 5.2.

4. Finally, in subsection 5.4, we further bound the maximum value of H̃FP (λ⃗) by the maxi-

mum value of a univariate function Ĥ(µ,L,T ) and analytically derive an upper bound for

maxµ≥0 Ĥ(µ,L,T ). This is our final bound for vBFP .

The complete chain of bounds that we use to derive our final bound for vBFP is shown below:

vBFP ≤ max
λ⃗∈[0,1]T

HFP (λ⃗) ≤ max
λ⃗∈[0,1]T

H̃FP (λ⃗) ≤ max
µ≥0

Ĥ(µ,L,T ) ≤ our final bound.

We now discuss the details.
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5.1. Bounding vBFP with maxλ⃗∈[0,1]T HFP (λ⃗)

Let CFP (λ⃗) denote the minimum expected cost under λ⃗. That is,

CFP (λ⃗) := minπ∈Π E

[
T∑

t=1

G
(
Iπt +Xπ

t−L −Dt(λt,m, θ)
)]

s.t. Iπt+1 = Iπt +Xπ
t−L −Dt(λt,m, θ) ∀ t,

Iπ1 = 0, Xπ
t ≥ 0 ∀ t,

where, by abuse of notation, we use Π to denote the set of all feasible (non-anticipating) replen-

ishment policies. Note that vBFP can be expressed as:

vBFP = maxλ⃗∈[0,1]T

{
T∑

t=1

mr(λt)−CFP (λ⃗)

}
.

Let Hπ
t (λ⃗) denote the history of all realizations under π and λ⃗ up to the end of period t. Since

unsatisfied demand in the current period is backlogged to the next period, we can express

Iπt =
t−1∑
s=1

Qπ
s −

t−1∑
s=1

Ds(λs,m, θ),

for each t. Thus, we can bound:

E

[
G(Iπ +Xπ

t−L −Dt(λt,m, θ))

∣∣∣∣∣ Hπ
t−L−1(λ⃗)

]

= E

[
G

(
t∑

s=1

Qπ
s −

t∑
s=1

Ds(λs,m, θ)

) ∣∣∣∣∣ Hπ
t−L−1(λ⃗)

]

≥ min
yt≥0

E

[
G

(
yt −

t∑
s=max{1,t−L}

Ds(λs,m, θ)

)]
. (6)

Note that the minimization in (6) is the classic Newsvendor problem and the optimal yt is given

by the Newsvendor quantile solution. However, due to the projection operator in the definition of

Dt(λt,m, θ), this quantile solution is not easy to characterize. Fortunately, under Assumption 2,

we can “ignore” this projection operator and simply use the quantile solution for the unrestricted

Normal random variable without too much lost in accuracy.

Let D̃s(λs,m, θ) =d Nt(m,mθ)λs. The following lemma tells us the impact of ignoring the pro-

jection operator in the definition of Dt(λt,m, θ).

Lemma 1. For any yt ≥ 0, we have:

E

[
G

(
yt −

t∑
s=max{1,t−L}

Ds(λs,m, θ)

)
−G

(
yt −

t∑
s=max{1,t−L}

D̃s(λs,m, θ)

)]

≥ −5(h+ b)(L+1)3/2m1/2 · exp
{
−1

4
m2(1−θ)

}
.
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By Lemma 1 and Assumption 2, since L+1≤ T , we can bound:

CFP (λ⃗) ≥ −5+
T∑

t=1

min
yt≥0

E

[
G

(
yt −

t∑
s=max{1,t−L}

D̃s(λs,m, θ)

)]
.

Note that the cost of ignoring the projection operator in the definition of Dt(λt,m, θ) is only a

constant. The solution to the minimization problem inside the above summation is given by the

following Newsvendor quantile solution:

y∗
t (λ⃗) := m ·

 t∑
s=max{1,t−L}

λs

+mθ ·

 t∑
s=max{1,t−L}

λ2
s

1/2

·Φ−1

(
b

h+ b

)
,

where Φ(·) is the cumulative distribution function (cdf) of the standard Normal random variable.

Combining the above bound for CFP (λ⃗) together with the fact that G(x)≥ h ·x, we get

vBFP ≤ max
λ⃗∈[0,1]T

HFP (λ⃗), (7)

where HFP (λ⃗) is defined as follows:

HFP (λ⃗) :=
T∑

t=1

mr(λt)−hmθ ·Φ−1

(
b

h+ b

)
·

 T∑
t=1

(
t∑

s=max{1,t−L}

λ2
s

)1/2
 .

It is not difficult to see that HFP (λ⃗) is jointly concave in λ⃗. Let λ⃗FP denote the optimal solution

of the maximization in (7). In the next subsection, we will derive useful properties of λ⃗FP .

5.2. Properties of λ⃗FP

We state two lemmas.

Lemma 2. Either λFP
s = 0 for all s or λFP

s > 0 for all s.

The above lemma tells us that it is not possible to have an optimal solution λ⃗FP under which

λFP
t = 0 for some t and λFP

t > 0 for others. The proof is by contradiction. We assume that there

exists an optimal solution λ⃗FP such that λFP
t = 0 for some t and λFP

t > 0 for others, and show that

we can construct an alternative solution λ⃗ that yields a larger value of HFP (·), contradicting the

optimality of λ⃗FP . We defer the details to the Appendix.

Lemma 2 allows us to prove the following lemma.

Lemma 3. We have 0≤ λFP
1 ≤ λFP

2 ≤ · · · ≤ λFP
T ≤ 1.
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Figure 1 The plots of λ⃗FP for the case where T = 50, L= 20, m= 50, b= 4, and h= 2. The values of λFP
t are

monotonically non-decreasing over time.

Lemma 3 tells us that the optimal solution λ⃗FP is monotonically non-decreasing over time (see

Figure 1 for a numerical illustration). This result is largely driven by the presence of holding cost.

If h= 0, it is immediate from the definition of HFP (λ⃗) that we must have λFP
1 = λFP

2 = · · ·= λFP
T .

If, however, h> 0, it is better to generate more demand at later periods than at earlier periods to

avoid incurring too much holding cost. Intuitively, since generating more demand requires us to

carry more safety stock, which incurs more holding cost, generating more demand at later periods

instead of earlier periods allows us to carry these extra safety stocks for a smaller number of

periods, which results in smaller cumulative holding costs. The monotonicity result in Lemma 3 is

useful for deriving a simple upper bound of HFP (λ⃗), which we discuss in the next subsection.

It is worth noting here that, despite being intuitive, the proof of Lemma 3 is actually not straight-

forward. In the proof, we heavily utilize the well-known Karush-Kuhn-Tucker (KKT) conditions

for optimality and proceed in the following two steps:

1. We first show that if there exists s̄ ∈ {2,3, . . . , T} such that λFP
s̄−1 > λFP

s̄ , then we must have

s̄ ≤ T − L. In particular, if T = L+ 1, this result immediately proves the lemma since the

monotonicity of λ⃗FP is immediately guaranteed.

2. Given the above observation, we then prove the lemma by contradiction. Suppose that λ⃗FP ̸= 0⃗

and there exists t̂∈ {2,3, . . . , T −L} such that λFP
t̂−1

>λFP
t̂

. In such case, we show that we can

always find some t̂2 < t̂1 such that some of the KKT conditions cannot simultaneously hold

for both λFP
t̂1

and λFP
t̂2

, contradicting the optimality of λ⃗FP . Hence, λ⃗FP must be monotonic.
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5.3. Bounding maxλ⃗∈[0,1]T HFP (λ⃗) with maxλ⃗∈[0,1]T H̃FP (λ⃗)

By Lemma 2, either λFP
s = 0 for all s or λFP

s > 0 for all s. Since the first scenario gives a trivial

bound (i.e., HFP (⃗0) = 0), in the remaining of this section, we will assume that λFP
s > 0 for all s.

That is, we will focus on computing an upper bound for HFP (λ⃗) on the set (0,1]T instead of [0,1]T .

The challenge in directly analyzing maxλ⃗∈(0,1]T HFP (λ⃗) is due to the “sum of square roots” term

in the definition of HFP (λ⃗). Thus, our idea is to bound HFP (λ⃗) with another function that only

contains a single square root term. The key observation that makes this reduction possible is stated

in the following lemma.

Lemma 4. Suppose that 0≤ x1 ≤ x2 ≤ · · · ≤ xT . Then,

T∑
t=1

√
xt ≥

(
T∑

t=1

(1+2(T − t))xt

)1/2

.

Proof. Simply square both sides and use the fact that
√
xt ·

(√
xt+1 + · · ·+√

xT

)
≥ (T − t)xt

(i.e., due to the monotonicity of x⃗). □

Note that the lower bound in Lemma 4 holds because of the monotonicity of x⃗. This is the reason

why we first proved the monotonicity of λ⃗FP in subsection 5.2. In particular, applying Lemma 4

to the sum of square roots in the definition of HFP (λ⃗) for monotonic λ⃗ yields:

Lemma 5. Suppose that 0≤ λ1 ≤ λ2 ≤ · · · ≤ λT . Then,

T∑
t=1

(
t∑

s=max{1,t−L}

λ2
s

)1/2

≥

(
T∑

t=1

γtλ
2
t

)1/2

,

where γt = (L+1)2 +2(L+1)(T −L− t) for t≤ T −L− 1 and γt = (T − t+1)2 for t≥ T −L.

Thus, we can define:

H̃FP (λ⃗) :=
T∑

t=1

mr(λt)−hmθ ·Φ−1

(
b

h+ b

)
·

(
T∑

t=1

γtλ
2
t

)1/2

,

and bound maxλ⃗∈(0,1]T HFP (λ⃗) from above with maxλ⃗∈(0,1]T H̃FP (λ⃗).

The benefit of using the simpler upper bound H̃FP (λ⃗) instead of the original HFP (λ⃗) is that,

using the standard first-order optimality condition, it can be shown that maxλ⃗∈(0,1]T H̃FP (λ⃗) can

be further bounded from above by the maximum of a univariate function, which eventually leads

to our final bound for vBFP . We discuss this next.
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5.4. Bounding maxλ⃗∈(0,1]T H̃FP (λ⃗) with maxµ≥0 Ĥ(µ,L,T )

Note that maxλ⃗∈(0,1]T H̃FP (λ⃗) is a multi-dimensional optimization problem. Although it is easier

to analyze than the original maxλ⃗∈(0,1]T HFP (λ⃗), its objective value is still not too easy to directly

analyze. To help us derive our final bound for vBFP , we will now take one last step and further

bound maxλ⃗∈(0,1]T H̃FP (λ⃗) with the maximum of a univariate function.

Let λ⃗∗ denote the optimal solution to maxλ⃗∈(0,1]T H̃FP (λ⃗). It is not difficult to verify that λ⃗∗

must be an interior solution. (In particular, if λ∗
t = 1 for some t, replacing λ∗

t with λt = 1− ε for a

sufficiently small ϵ increases the value of the objective function.) As a result, the optimal solution

must satisfy the following first-order-optimality condition: For all t, we have

m− 2mλ∗
t − 2ξ ·mθγtλ

∗
t

(
T∑

t=1

γt(λ
∗
t )

2

)−1/2

= 0,

where ξ := hΦ−1(b/(h+ b))/2.

Now, let µ∗ be defined below:

µ∗ := ξmθ−1

(
T∑

t=1

γt(λ
∗
t )

2

)−1/2

. (8)

Given µ∗, we can express λ∗
t as follows:

λ∗
t =

1

2
· 1

1+µ∗γt
.

Finally, using the above expression, we can bound H̃FP (λ⃗∗) as follows:

H̃FP (λ⃗∗) ≤ max
µ≥0

{
T∑

t=1

m · 1
2
· 1

1+µγt
·
(
1− 1

2
· 1

1+µγt

)
− 2m2θ−1ξ2

µ

}

≤ max
µ≥0

{
m

2
·

(
T∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)}
:= max

µ≥0
Ĥ(µ,L,T ) = Ĥ∗(L,T ).

The following lemma gives us a property of Ĥ∗(L,T ).

Lemma 6. For any given T , the function Ĥ∗(L,T ) is non-increasing in L.

The above lemma tells us that Ĥ∗(L,T ) is non-increasing in L. This is an ideal property that is

expected to hold for any reasonable upper bound of vBFP (i.e., since we anticipate that vBFP will

be non-increasing in L too).

All that remains now is to compute an upper bound for Ĥ∗(L,T ). We do this by splitting the

feasible set {µ≥ 0} into three cases:
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• Case 1: µ≥ 1,

• Case 2: (k+1)−2 <µ≤ k−2 for some k≤L,

• Case 3: (k+1)−2 <µ≤ k−2 for some k≥L+1,

and derive an upper bound for each case. We state a lemma.

Lemma 7. We have:

• For case 1, we can bound:

Ĥ(µ,L,T )≤m ·
(

π2

32m2(θ−1)ξ2
+

logT

(L+1)2

)
:= H1(L,T ).

• For case 2, for any k ∈ {1,2, . . . ,L}, we can bound:

Ĥ(µ,L,T ) ≤ m ·
(
2+ logT +

π2

32m2(θ−1)ξ2

)
:= H2(L,T ).

• For case 3, for any k≥L+1, we can bound:

Ĥ(µ,L,T ) ≤ m ·
(

π2

32m2(θ−1)ξ2
+

4T

exp (ξ2m2(θ−1) ·L)

)
:= H3(L,T ).

Putting all the bounds in Lemma 7 together yields our final bound:

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then,

vBFP ≤ Ĥ∗(L,T ) ≤ max{H1(L,T ),H2(L,T ),H3(L,T )}

≤ m ·
(
2+ logT +

π2

32m2(θ−1)ξ2
+

4T

exp (ξ2m2(θ−1) ·L)

)
.

The above bound highlights the non-trivial impact of lead time on the expected profit of BFP.

When L is very small, the bound is linear in T ; as L grows, the bound decays exponentially in

L; and, eventually, when L > (m2(1−θ)/ξ2) · logT , the bound becomes independent of L. (The

exponential decay of the bound is consistent with the plots Ĥ∗(L,T ) in Figure 2.) In particular,

for all L > (m2(1−θ)/ξ2) · logT , the bound is roughly of order m · (logT +m2(1−θ)/ξ2), which only

grows logarithmically in T . This is in contrast to the bound in Theorem 1, which is linear in both

m and t.

6. Conclusion

In this paper, we revisit the joint inventory and pricing problem with backlogging and positive lead

time and address a fundamental question regarding the value of dynamic pricing. In contrast to

most asymptotic analysis in the RM literature, which primarily focuses on the setting with a large

mean demand, we allow the mean demand, the lead time, and the length of the selling horizon to
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Figure 2 The plots of Ĥ∗(L,T ) for the case where T = 100, m= 50, b= 4, and h= 2. As θ increases, Ĥ∗(L,T )

drops faster and converges to a lower point.

simultaneously grow large. This is motivated by the fact that, in practice, mean demand is not

the only parameter of interest and the values of these other parameters can also be large. Our

results underscore the necessity of dynamic pricing, even in the setting where demand variability

is (asymptotically) smaller than its mean, which is in contrast to the well-known result regarding

the asymptotic optimality of the best FP policy in the RM literature.
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EC.1. Proof of Lemma 1

Fix t. Define Gt to be the event when the projection operator in the definition of Ms(m,θ) is not

active from periods max{1, t−L} to t, i.e.,

Gt :=
{
Ms(m,θ) =Ns(m,mθ), ∀s∈ [max{1, t−L}, t]

}
=
{
0≤Ns(m,mθ)≤ 2m, ∀s∈ [max{1, t−L}, t]

}
.

By the independent assumption, the standard tail bound for a Normal random variable and the

sub-additive property of probability measure, we have:

P(Gc
t) ≤

2(L+1)

(2π)1/2m
exp

{
−1

2
m2(1−θ)

}
.

Now, let D̃t(λt,m, θ) =Nt(m,θ)λt. For any yt, we can bound:∣∣∣∣∣
(
yt −

t∑
s=max{1,t−L}

Ds(λs,m, θ)

)+

−

(
yt −

t∑
s=max{1,t−L}

D̃s(λs,m, θ)

)+∣∣∣∣∣
≤

∣∣∣∣∣
t∑

s=max{1,t−L}

Ds(λs,m, θ)−
t∑

s=max{1,t−L}

D̃s(λs,m, θ)

∣∣∣∣∣.
Similarly, ∣∣∣∣∣

(
t∑

s=max{1,t−L}

Ds(λs,m, θ)− yt

)+

−

(
t∑

s=max{1,t−L}

D̃s(λs,m, θ)− yt

)+∣∣∣∣∣
≤

∣∣∣∣∣
t∑

s=max{1,t−L}

Ds(λs,m, θ)−
t∑

s=max{1,t−L}

D̃s(λs,m, θ)

∣∣∣∣∣.
Thus,

E

[
G

(
yt −

t∑
s=max{1,t−L}

Ds(λs,m, θ)

)
−G

(
yt −

t∑
s=max{1,t−L}

D̃s(λs,m, θ)

)]

≥ −(h+ b) ·E

[∣∣∣∣∣
t∑

s=max{1,t−L}

Ds(λs,m, θ)−
t∑

s=max{1,t−L}

D̃s(λs,m, θ)

∣∣∣∣∣
]

= −(h+ b) ·E

[∣∣∣∣∣
t∑

s=max{1,t−L}

Ds(λs,m, θ)−
t∑

s=max{1,t−L}

D̃s(λs,m, θ)

∣∣∣∣∣ ·1{Gc
t}

]

≥ −(h+ b) ·E

[(
2Lm+

t∑
s=max{1,t−L}

D̃s(λs,m, θ)

)
·1{Gc

t}

]
,

where the last inequality holds since, by definition, Ds(λs,m, θ)≤ 2m for all s.
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Let Nt =Nt(m,mθ). By Cauchy-Schwarz inequality,

E

[(
t∑

s=max{1,t−L}

Nsλs

)
·1{Gc

t}

]
≤ E

[(
t∑

s=max{1,t−L}

Nsλs

)2]1/2
·P(Gc

t)
1/2

≤ (L+1)1/2E

[
t∑

s=max{1,t−L}

N 2
sλ

2
s

]1/2
·P(Gc

t)
1/2

≤ (L+1)1/2E

[
t∑

s=max{1,t−L}

N 2
s

]1/2
·P(Gc

t)
1/2

≤ (L+1) · (m2 +m2θ)1/2 ·P(Gc
t)

1/2

≤
√
2 · (L+1) ·m ·P(Gc

t)
1/2,

where the fourth inequality holds since E[N 2
s ] =m2 +m2θ.

Put all things together, we have:

E

[
G

(
yt −

t∑
s=max{1,t−L}

Ds(λs,m, θ)

)
−G

(
yt −

t∑
s=max{1,t−L}

D̃s(λs,m, θ)

)]

≥ −(h+ b) ·
[
2Lm+

√
2(L+1)m

]
·P(Gc

t)
1/2

≥ −4(h+ b)(L+1)m ·P(Gc
t)

1/2

≥ −5(h+ b)(L+1)3/2m1/2 · exp
{
−1

4
m2(1−θ)

}
.

EC.2. Proof of Theorem 1

We first bound the expected total revenue. As argued before the statement of Theorem 1, λt ∈ [ 1
4
, 3
4
]

for all t under π̄. Thus,

E

[
T∑

t=1

mr(λt)

]
≥ Tmr

(
1

4

)
=

3

16
Tm. (EC.1)

We now bound the expected total cost. For each t, define an event At := {|∆t| ≤ m
3
}. Also, let

A :=∩T
t=1At. We now bound P(Ac). First note that for any Z ∼N(0,1), we have

P(Z > a) =
1√
2π

∫ ∞

x=a

e−x2/2du<
1√
2π

∫ ∞

x=a

x

a
· e−x2/2dx=

1

(2π)1/2 · a · e−a2/2
.

Also note that for any t, |∆t| ≤ m
3
iff |Nt(m,mθ)−m| ≤ m

3
. Therefore, by the independent assump-

tion and the sub-additive property of probability measure, we have

P(Ac)≤
T∑

t=1

P(Ac
t) = T ·P

(
Z >

m(1−θ)

3

)
≤ 3T

(2π)1/2 ·m(1−θ)
exp

{
− 1

18
·m2(1−θ)

}
.
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On event A, the projection operator in the definition of δt is not active for all t. By the identity

(4), it is not difficult to see that

t∑
s=1

Ds(λs,m, θ) =
t∑

s=1

mλs +
t∑

s=1

∆sλs =
tm

2
+∆tλt.

This allows us to express It+1 more compactly as follows:

It+1 =
t∑

s=1

Qs −
t∑

s=1

Ds(λs,m, θ) = −∆tλt.

Since λt ≤ 3
4
≤ 1 on A, we can bound:

G(It+1) ≤ (h+ b)|∆t|.

We now consider what happens on Ac. We have:

G(It+1) = h(It+1)
+ + b(−It+1)

+

≤ h ·
t∑

s=1

Qs + b ·
t∑

s=1

Ds(λs,m, θ)

≤ h · tm
2

+ b · 2tm ≤ 2(h+ b)tm,

where the second inequality follows since Ds(λs,m, θ)≤ 2mλs ≤ 2m.

Now, put the bounds together, we can bound the expected total cost under π̄ as follows:

T∑
t=1

E[G(It+1)] =
T∑

t=1

E[G(It+1) ·1{A}] +
T∑

t=1

E[G(It+1) ·1{Ac}]

≤
T∑

t=1

(h+ b)E [|∆t| ·1{A}] +
T∑

t=1

2(h+ b)tmP(Ac)

≤ (h+ b) ·
T∑

t=1

√
E [|∆t|2] +

T∑
t=1

2(h+ b)tmP(Ac)

= (h+ b) ·Tmθ +2(h+ b) · (T +1)2 ·mP(Ac)

≤ (h+ b) ·Tmθ +
3

(2π)1/2
·mθ−1/2 · (h+ b) · (T +1)3 ·m1/2 · exp

{
− 1

18
·m2(1−θ)

}
≤ (h+ b) ·Tmθ +2mθ−1/2

≤ 3(h+ b) ·Tmθ (EC.2)

where the second inequality holds by Cauchy-Schwarz Inequality; the second equality holds by the

definition of ∆t and the last two inequalities hold by Assumption 2. Putting (EC.1) and (EC.2)

into (1) under π := π̄ yields the final bound.
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EC.3. Proofs of Lemma 2 and Lemma 3

To facilitate our analysis, we will express maxλ⃗∈[0,1]T HFP (λ⃗) as a minimization problem:

Υ := min
T∑

t=1

(
t∑

s=max{1,t−L}

λ2
s

)1/2

+C ·
T∑

t=1

λ2
t −C ·

T∑
t=1

λt (EC.3)

s.t. 0≤ λs ≤ 1, ∀s∈ [T ]

where C =m1−θ[hΦ−1( b
h+b

)]−1 > 0. We will use η1
s and η2

s to denote the dual variables for constraints

λs ≥ 0 and λs ≤ 1, respectively. Let Ft(λ⃗) := (
∑t

s=max{1,t−L} λ
2
s)

1/2 +C ·λ2
t −Cλt and the objective

function of (EC.3) can be written as
∑T

t=1Ft(λ⃗).

Since strong duality holds for (EC.3), KKT conditions are necessary and sufficient to charac-

terize optimal solutions. To facilitate our analysis, we start with listing the KKT conditions. The

Lagrangian function is defined as follows:

L(λ⃗ , η⃗1, η⃗2) :=−
T∑

t=1

Ft(λ⃗)+
T∑

s=1

η1
s ·λs +

T∑
s=1

η2
s · (1−λs) (EC.4)

The KKT conditions are as follows:

• Stationarity: For any s∈ [T ], we have 0∈ ∂L (i.e., 0 belongs to subdifferential of L at λ⃗) where

∂L :=−
T∑

t=1

∂Ft(λ⃗)+ η⃗1 − η⃗2.

According to the definition of subgradient, when Ft(·) is differentiable for all t at λ⃗, the

stationarity condition is equivalent to

−
T∑

t=1

∇Ft(λ⃗)+ η⃗1 − η⃗2 = 0.

• Complementary Slackness condition: η1
s ·λs = 0, η2

s · (1−λs) = 0 for each s∈ [T ].

• Feasibility: We omit the primal feasibility conditions. For the dual feasibility, η1
s and η2

s are

non-negative for all s∈ [T ].

For analytical convenience, we define λt := 0 for any t < 0 or t > T . Note that when L = 0, the

optimization problem (EC.3) is equivalent to

Υ := min (1−C) ·
T∑

t=1

λt +C ·
T∑

t=1

λ2
t

s.t. 0≤ λs ≤ 1, ∀s∈ [T ]

It is not difficult to see that, in this case, λ⃗FP = (λ̄, λ̄, . . . , λ̄) for some λ̄ ∈ [0,1]. Obviously, λ⃗FP

satisfies the properties in the two lemmas. Thus, our proof here focuses on the case L > 0. For

brevity, we will drop the superscript “FP” in λ⃗FP and simply use λ⃗ to denote optimal solution.
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EC.3.1. Proof of Lemma 2

We prove the lemma via contradiction. Suppose to the contrary that there exists some t̄ such that

λt̄ = 0, but λ⃗ ̸= 0. We consider the following two scenarios:

• Scenario 1 : λt̄ = 0 and λt̄+1 > 0 for some t̄≤ T − 1.

• Scenario 2 : λt̄ > 0 and λt̄+1 = 0 for some t̄≤ T − 1.

We now show that neither scenarios could happen.

Scenario 1

Consider the following alternative feasible solution:

λ′
t =



λt t≤ t̄− 1

v t= t̄√
λ2
t̄+1 − v2 t= t̄+1

λt t≥ t̄+2

for some 0 ≤ v ≤
√
3
2
· λt̄+1. The value of v will be decided later. Let Π(λ⃗) and Π(λ⃗′) denote the

objective values of (EC.3) under λ⃗ and λ⃗′, respectively. Then,

Π(λ⃗′)−Π(λ⃗) =


√√√√ t̄−1∑

s=t̄−L

λ2
s + v2 +

√√√√(λ2
t̄+1 − v2)+

t̄+L+1∑
s=t̄+2

λ2
t −C ·

(
v+

√
λ2
t̄+1 − v2

)
−


√√√√ t̄−1∑

s=t̄−L

λ2
s +

√√√√λ2
t̄+1 +

t̄+L+1∑
s=t̄+2

λ2
s −C ·λt̄+1

 .
Define a, b, and z as follows:

a :=
t̄−1∑

s=t̄−L

λ2
s, b :=

t̄+L+1∑
s=t̄+2

λ2
s and z := v2

Then, we can express:

Π(λ⃗′)−Π(λ⃗) =
[√

a+ z+
√

λ2
t̄+1 − z+ b−C ·

(√
z+

√
λ2
t̄+1 − z

)]
−
[√

a+
√
λ2
t̄+1 + b−C ·λt̄+1

]
=:Ψ(z). (EC.5)

To show that λ⃗ cannot be an optimal solution, it is sufficient that we show Ψ(z) < 0 for some

z ∈ (0, λ2
t̄+1). We consider the following two cases: a= 0 and a> 0.
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Case 1: a= 0. We first show that, if a= 0, then we must have C > 1; otherwise λ⃗ cannot be

optimal in the first place. We state a claim.

Claim EC.1. Suppose that C ≤ 1 and λ⃗ is an optimal solution to (EC.3). Then for any t̄ with

λt̄+1 > 0, we have
∑t̄

s=t̄−L λ
2
s > 0.

Given that C > 1, we now show that there must exists some z ∈ (0, λ2
t̄+1) such that Ψ(z) < 0.

Note that, when a= 0, for z ≥ 0, we have:

Ψ(z) ≤ −(C − 1)
√
z+C

[
λt̄+1 −

√
λ2
t̄+1 − z

]
= −(C − 1)

√
z+C

z

λt̄+1 +
√

λ2
t̄+1 − z

= −(C − 1)
√
z

1− C

C − 1

√
z

λt̄+1 +
√

λ2
t̄+1 − z

 .
It is not difficult to see that the term inside the [·] after the last equality is positive for a sufficiently

small z. This completes case 1.

Case 2: a> 0. When a> 0, for z ≥ 0, we have:

Ψ(z) ≤
[√

a+ z−
√
a
]
−C

√
z+C

[
λt̄+1 −

√
λ2
t̄+1 − z

]
= −C

√
z

− 1

C

√
z√

a+ z+
√
a
+1−

√
z

λt̄+1 +
√
λ2
t̄+1 − z

 .
Again, the term inside the [·] after the last equality is positive for a sufficiently small z.

Summarizing the two cases, we conclude that scenario 1 cannot happen.

Scenario 2

Consider the following alternative feasible solution λ⃗′:

λ′
t =



λt t≤ t̄− 1√
λ2
t̄ − v2 t= t̄

v t= t̄+1

λt t≥ t̄+2

for some 0≤ v < λt̄. The value of v will be decided later. Let Π̂(λ⃗) and Π̂(λ⃗′) denote the objective

values of (EC.3) under λ⃗ and λ⃗′, respectively. Then,

Π̂(λ⃗′)− Π̂(λ⃗) =

[√
b̂+λ2

t̄ − z+
√
z+ â−C ·

(√
z+

√
λ2
t̄ − z

)]
−
[√

b̂+λ2
t̄ +

√
â−C ·λt̄

]
=: Ψ̂(z) (EC.6)

where b̂ :=
∑t̄−1

s=t̄−L λ
2
s, â :=

∑t̄+L+1

s=t̄+2 λ
2
s, and z := v2. Note that Ψ(z) and Ψ̂(z) share a similar

structure with slight changes of constants only: a→ â, b→ â, λt̄+1 → λt̄. By similar arguments as in

scenario 1, we consider the following two cases:
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• Case 1. â= 0.

• Case 2. â > 0.

For case 1, by similar arguments in proving Claim EC.1 , we can show that if â= 0, then C > 1;

otherwise, λ⃗ cannot be optimal. Thus, we can bound

Ψ̂(z) ≤ −(C − 1)
√
z

[
1− C

C − 1

√
z

λt̄ +
√
λ2
t̄ − z

]
.

It is not difficult to see that the term inside the [·] after the last equality is positive for a sufficiently

small z. This completes case 1.

For case 2, when â > 0, for z ≥ 0, we have:

Ψ̂(z) ≤
[√

â+ z−
√
â
]
−C

√
z+C

[
λt̄ −

√
λ2
t̄ − z

]
= −C

√
z

[
− 1

C

√
z

√
â+ z+

√
â
+1−

√
z

λt̄ +
√
λ2
t̄ − z

]
.

Again, the term inside the [·] after the last equality is positive for a sufficiently small z. This

completes case 2. We conclude that scenario 2 cannot happen.

Since neither of the two scenarios could happen, we conclude that if λ⃗ is an optimal solution,

then either λ⃗= (0,0, . . . ,0) or λs > 0 for any 1≤ s≤ T . The completes the proof for Lemma 2.

EC.3.1.1. Proof of Claim EC.1. We prove the claim by contradiction. Suppose that C ≤ 1

and λ⃗ is an optimal solution to (EC.3) with λt̄+1 > 0. Moreover,
∑t̄

s=t̄−L λ
2
s = 0. Under this λ⃗, the

objective in (EC.3) can be written as

T∑
t=1

(
t∑

s=t−L

λ2
s

)1/2

+C ·
T∑

t=1

λ2
t −C ·

T∑
t=1

λt

=
t̄+L+1∑
t=t̄+1

(
t∑

s=t−L

λ2
s

)1/2

+C ·λ2
t̄+1 −C ·λt̄+1

+
t̄∑

t=1

(
t∑

s=s=t−L

λ2
s

)1/2

+
T∑

t=t̄+L+2

(
t∑

s=t−L

λ2
s

)1/2

+C ·
∑

t≤T,t ̸=t̄+1

λ2
t −C ·

∑
t≤T,t ̸=t̄+1

λt

For x> 0, define Φ(x) as follows:

Φ(x) =
t̄+L+1∑
t=t̄+1

 ∑
s̸=t̄+1

t−L≤s≤t

λ2
s +x2


1/2

+C ·x2 −C ·x

+
t̄∑

t=1

(
t∑

s=t−L

λ2
s

)1/2

+
T∑

t=t̄+L+2

(
t∑

s=t−L

λ2
s

)1/2

+C ·
∑

t≤T,t ̸=t̄+1

λ2
t −C ·

∑
t≤T,t ̸=t̄+1

λt
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Note that when x > 0, Φ(x) is differentiable and Φ′(x) is continuous. In addition, when x= λt̄+1,

we have:

Φ′(λt̄+1) =
t̄+L+1∑
t=t̄+1

λt̄+1√∑t

s=t−L λ
2
t

+2C ·λt̄+1 −C.

Since
∑t̄

s=t̄−L λ
2
s = 0, we have λs = 0 for any t̄−L≤ s≤ t̄. Thus

t̄+L+1∑
t=t̄+1

λt̄+1√∑t

s=t−L λ
2
t

≥ λt̄+1√∑t̄+1

s=t̄−L+1 λ
2
t

=
λt̄+1

λt̄+1

= 1,

which implies Φ′(λt̄+1)≥ 1−C +2Cλt̄+1 > 1−C. Note that, if C ≤ 1, Φ′(λt̄+1)> 0, which means

that λt̄+1 cannot be optimal.

EC.3.2. Proof of Lemma 3

Obviously, λ⃗= 0 satisfies the property. In what follows, we will consider the case λ⃗ ̸= 0⃗. We prove

the lemma using the KKT conditions. The stationarity conditions at λ⃗ can be written as

∂L
∂λk

=−
L+k∑
t=k

λk√∑t

s=t−L λ
2
s

− 2C ·λk +C + η1
k − η2

k = 0, ∀1≤ k≤ T −L− 1

∂L
∂λk

=−
T∑

t=k

λk√∑t

s=t−L λ
2
s

− 2C ·λk +C + η1
k − η2

k = 0, ∀T −L≤ k≤ T

We state a claim.

Claim EC.2. Suppose λ⃗ satisfies the KKT conditions and there exists s̄ with 2≤ s̄≤ T such that

λs̄−1 >λs̄. Then, we must have s̄≤ T −L.

We now prove the lemma by contradiction using Claim EC.2. Suppose that there exists t̂ satis-

fying 2≤ t̂≤ T −L such that λt̂−1 >λt̂. In what follows, we will show that if this happens, then we

can always find some t̂2 < t̂1 such that the stationary conditions (in the KKT conditions) cannot

simultaneously hold for both λt̂1
and λt̂2

, contradicting the optimality of λ⃗. Before introducing t̂1

and t̂2, we first define a set K as follows:

K := {t |2≤ t≤ T −L, λt−1 >λt}.

Let t̂1 and t̂2 be as defined below:

• t̂1 := the smallest period in the set argmint∈K λt.

• t̂2 := the largest period in the set argmax1≤t≤t̂1
λt.
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Intuitively, t̂1 is the smallest period in K under which λt attains the minimum value in K and t̂2 is

the largest period t≤ t̂1 that attains the maximum value of λt during periods 1 to t̂1. Some crucial

properties of t̂1 and t̂2 are stated in the following claim.

Claim EC.3. For t̂1, t̂2 defined above, we have

1. t̂2 < t̂1 ≤ T −L and λt̂2
>λt̂1

.

2. For any t satisfying t̂2 < t< t̂1, we have λt̂2
>λt >λt̂1

.

3. For any t > t̂1, we have λt ≥ λt̂1
.

We now consider the KKT conditions related to λt̂1
and λt̂2

. Since λ⃗ satisfies the KKT conditions,

by the complementary conditions and the fact that 1 ≥ λt̂2
> λt̂1

≥ 0, we have η2
t̂1
= η1

t̂2
= 0 and,

thus, by the stationarity conditions, we have

∂L
∂λt̂1

=−
t̂1+L∑
t=t̂1

λt̂1√∑t

s=t−L λ
2
s

− 2C ·λt̂1
+C + η1

t̂1
= 0 (EC.7)

∂L
∂λt̂2

=−
t̂2+L∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

− 2C ·λt̂2
+C − η2

t̂2
= 0 (EC.8)

By the dual feasibility conditions, these two equalities further imply that

t̂2+L∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

<

t̂1+L∑
t=t̂1

λt̂1√∑t

s=t−L λ
2
s

. (EC.9)

Next, we consider two scenarios:

• Scenario 1: t̂2 +L< t̂1

• Scenario 2: t̂2 +L≥ t̂1

For the first scenario, one key observation is that, for any t with t̂2 −L≤ t≤ t̂2 +L< t̂1, we have

λt ≤ λt̂2
(by the definition of t̂2). Therefore,

t̂2+L∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

≥
t̂2+L∑
t=t̂2

1√
L+1

=
√
L+1.

Also, for any t with t̂2 < t̂1 −L≤ t≤ t̂1 +L, we must have λt ≥ λt̂1
(by the second and the third

parts of Claim EC.3). Therefore,

t̂1+L∑
t=t̂1

λt̂1√∑t

s=t−L λ
2
s

≤
t̂1+L∑
t=t̂1

1√
L+1

=
√
L+1.
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The above two inequalities imply

t̂2+L∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

≥
t̂1+L∑
t=t̂1

λt̂1√∑t

s=t−L λ
2
s

.

However, this contradicts inequality (EC.9). We conclude that the first scenario cannot happen.

For the second scenario, since t̂2 < t̂1 ≤ t̂2+L (by the first part of Claim EC.3 and the definition

of scenario 2), (EC.9) can be expressed as

t̂1−1∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

+

t̂2+L∑
t=t̂1

λt̂2√∑t

s=t−L λ
2
s

<

t̂2+L∑
t=t̂1

λt̂1√∑t

s=t−L λ
2
s

+

t̂1+L∑
t=t̂2+L+1

λt̂1√∑t

s=t−L λ
2
s

.

Since λt̂2
>λt̂1

(by the first part of Claim EC.3), this implies

t̂1−1∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

<

t̂1+L∑
t=t̂2+L+1

λt̂1√∑t

s=t−L λ
2
s

. (EC.10)

By the definition of t̂2, we have λt ≤ λt̂2
for any t≤ t̂1. Moreover, by the last two parts of Claim

EC.3, we have λt ≥ λt̂1
for any t̂2 ≤ t≤ T . Therefore,

t̂1−1∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

≥ t̂1 − t̂2√
L+1

,

t̂1+L∑
t=t̂2+L+1

λt̂1√∑t

s=t−L λ
2
s

≤ t̂1 − t̂2√
L+1

,

which together imply

t̂1−1∑
t=t̂2

λt̂2√∑t

s=t−L λ
2
s

≥
t̂1+L∑

t=t̂2+L+1

λt̂1√∑t

s=t−L λ
2
s

,

contradicting (EC.10), as well as (EC.9) by implication. Thus, the second scenario cannot happen.

We conclude that there is no optimal λ⃗ under which there is some t̂ with 2≤ t̂≤ T that satisfies

λt̂−1 >λt̂. This completes the proof for Lemma 3. □

EC.3.2.1. Proof of Claim EC.2. To prove s̄≤ T −L, it is sufficient to show that λT−L ≤
λT−L+1 ≤ λT−L+2 ≤ · · · ≤ λT . We prove this via contradiction. Suppose there exists some t̄ satisfying

T −L+1≤ t̄≤ T such that λt̄−1 >λt̄. Since 1≥ λt̄−1 >λt̄ ≥ 0, by the stationarity conditions,

∂L
∂λt̄−1

=−
T∑

t=t̄−1

λt̄−1√∑t

s=t−L λ
2
s

− 2C ·λt̄−1 +C − η2
t̄−1 = 0, (EC.11)

∂L
∂λt̄

=−
T∑
t=t̄

λt̄√∑t

s=t−L λ
2
s

− 2C ·λt̄ +C + η1
t̄ = 0. (EC.12)
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By the dual feasibility conditions, (EC.11) and (EC.12) imply

T∑
t=t̄

λt̄√∑t

s=t−L λ
2
s

+2C ·λt̄ ≥
λt̄−1√∑t̄−1

s=t̄−L−1 λ
2
s

+
T∑
t=t̄

λt̄−1√∑t

s=t−L λ
2
s

+2C ·λt̄−1. (EC.13)

Since λt̄−1 >λt̄, (EC.13) implies

0>
T∑
t=t̄

λt̄√∑t

s=t−L λ
2
s

−
T∑
t=t̄

λt̄−1√∑t

s=t−L λ
2
s

≥ λt̄−1√∑t̄−1

s=t̄−L−1 λ
2
s

+2C · (λt̄−1 −λt̄)> 0.

Since 0> 0 cannot happen, we conclude that (EC.13) cannot hold. Thus, t̄ cannot exist. □

EC.3.2.2. Proof of Claim EC.3. We prove the three parts separately.

Part 1. Note that t̂1 ≤ T −L holds by definition of K. Since λt̂1−1 >λt̂1
, by the definition of t̂2, we

must have t̂2 ≤ t̂1 − 1< t̂1, which implies λt̂2
≥ λt̂1−1 >λt̂1

.

Part 2. λt̂2
> λt holds by the definition of t̂2. As for λt > λt̂1

, suppose to the contrary that there

exists t satisfying t̂2 < t < t̂1 such that λt ≤ λt̂1
. Without loss of generality, we assume that it is

the smallest period satisfying this inequality. By the definition of t, we must have λt−1 >λt̂1
≥ λt,

indicating that t ∈ K. This further implies that λt = λt1 since λt̂1
= mint∈K{λt}. However, λt =

λt̂1
=mint∈K{λt} contradicts with the ‘minimum index’ assumption on t̂1 (i.e., since t < t̂1). We

conclude that λt ≤ λt̂1
cannot happen.

Part 3. We prove this part by contradiction. Suppose that there exists t′ satisfying t̂1 +1≤ t′ ≤ T

such that λt′ < λt̂1
(without loss of generality, let t′ ≥ t̂1 +1 be the smallest of such periods). By

the definition of t′, we have λt′−1 ≥ λt̂1
>λt′ . This implies t′ ∈K and, therefore, λt′ ≥ λt̂1

according

to the definition of t̂1. But this contradicts λt′ <λt̂1
. We conclude that such t′ cannot exist.

This completes the proof for Claim EC.3. □

EC.4. Proof of Lemma 5

Using the notations in Lemma 4, let

x1 = λ2
1

x2 = λ2
1 +λ2

2

:

xL = λ2
1 +λ2

2 + · · ·+λ2
L

xL+1 = λ2
1 +λ2

2 + · · ·+λ2
L +λ2

L+1

xL+2 = λ2
2 +λ2

3 + · · ·+λ2
L+1 +λ2

L+2
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xL+3 = λ2
3 +λ2

4 + · · ·+λ2
L+2 +λ2

L+3

:

xT = λ2
T−L +λ2

T−L+1 + · · ·+λ2
T−1 +λ2

T

Since λ⃗ is monotonic, x⃗ is also monotonic. Let αt = 1+2(T − t). By Lemma 4, we have:

T∑
t=1

√
xt ≥

(
T∑

t=1

αtxt

)1/2

=

[
T∑

t=1

λt ·

(
min{t+L,T}∑

s=t

αs

)]1/2
=

(
T∑

t=1

λtγt

)1/2

(EC.14)

where γt :=
∑min{t+L,T}

s=t αs. More specifically,

γT = αT

= 1+2 · 0 = 12

γT−1 = αT−1 +αT

= 2+2 · 1 = 22

:

γT−L+1 = αT−L+1 +αT−L+2 + · · ·+αT−1 +αT

= L+2 · (1+ · · ·+(L− 1)) =L2

γT−L = αT−L +αT−L+1 + · · ·+αT−1 +αT

= (L+1)+2 · (1+ · · ·+L) = (L+1)2

γT−L−1 = αT−L−1 +αT−L + · · ·+αT−2 +αT−1

= (L+1)+2 · (2+ · · ·+(L+1)) = (L+1)2 +2 · (L+1) · 1

γT−L−2 = αT−L−2 +αT−L−1 + · · ·+αT−3 +αT−2

= (L+1)+2 · (3+ · · ·+(L+2)) = (L+1)2 +2 · (L+1) · 2

γT−L−3 = αT−L−3 +αT−L−2 + · · ·+αT−4 +αT−3

= (L+1)+2 · (4+ · · ·+(L+3)) = (L+1)2 +2 · (L+1) · 3

:

γ1 = α1 +α2 + · · ·+αL +αL+1 = (L+1)2 +2 · (L+1) · (T −L− 1)

More compactly, we can write:

γt = (L+1)2 +2 · (L+1) · (T −L− t) for t≤ T −L− 1

γt = (T − t+1)2 for t > T −L− 1
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EC.5. Proof of Lemma 6

The proof of Lemma 6 proceeds in two steps. To facilitate our analysis, we let γt(L) be the γt

defined under L (we assume T is a given constant) and we regard any L satisfying L < T − 1 as

feasible L.

First we show that for each t, we have γt(L) is non-decreasing in L. This property directly follows

the definition of γt(L). According to their definitions in Lemma 5, we have

γt(L) =

(L+1) · [2(T − t+1)− (L+1)] L+1≤ T − t

(T − t+1)2 L+1>T − t

Since T ≥ t+L+1, γt(L) is non-decreasing in L.

Next, we prove the statement in the lemma. Note that for any given µ> 0 and two feasible lead

times L1 <L2, we have

Ĥ(µ,L1, T )≥ Ĥ(µ,L2, T ).

since γt(L1)≤ γt(L2) for each t. Therefore, if µ∗
1, µ

∗
2 maximize Ĥ(µ,L1, T ) and Ĥ(µ,L2, T ) respec-

tively, we have

Ĥ(L2, T ) = Ĥ(µ∗
2,L2, T )≤ Ĥ(µ∗

2,L1, T )≤ Ĥ(µ∗
1,L1, T ) = Ĥ∗(L1, T )

This completes the proof for the lemma.

EC.6. Proof of Lemma 7

First note that

Ĥ(µ,L,T ) =
m

2
·

(
T∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

=
m

2
·

T∑
t=T−L

1

1+µγt
+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

=
1
√
µ
· m
2
·
L+1∑
ℓ=1

√
µ

1+µℓ2
+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

≤ 1
√
µ
· m
2
·

L+1∑
ℓ=1

∫ ℓ

x=ℓ−1

d
√
µx

1+µx2
+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

=
1
√
µ
· m
2
·
∫ L+1

x=0

d
√
µx

1+µx2
+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

=
1
√
µ
· m
2
·
∫ √

µ(L+1)

z=0

dz

1+ z2
+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)
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=
1
√
µ
· m
2
· tan−1(

√
µ(L+1))+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

≤ 1
√
µ
· m
2
· π
2
+

m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ

)

=
m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 4m2(θ−1)ξ2

µ
+

π

2
· 1
√
µ

)

=
m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 2m2(θ−1)ξ2

µ
− 2m2(θ−1)ξ2

µ
+

π

2
· 1
√
µ

)

≤ m

2
·

(
T−L−1∑

t=1

1

1+µγt
− 2m2(θ−1)ξ2

µ
+

π2

32m2(θ−1)ξ2

)
(EC.15)

where the first inequality holds since
√
µ

1+µx2
decreases in x and the second inequality holds since

tan−1(x) ≤ π/2 for any x > 0, the last inequality holds by maximizing the last two terms in the

parenthesis over µ. We analyze each of the three cases respectively.

Case 1: µ≥ 1

In this case, we only need to bound the summation term. In particular, given the expression of γt,

for the first T −L− 1 terms we have:

T−L−1∑
t=1

1

1+µγt
≤

T−L−1∑
t=1

1

µγt
≤

T−L−1∑
t=1

1

γt
≤
∫ T−L−1

0

dx

(L+1)2 +2(L+1)x

≤ log((L+1)2 +2(T −L− 1))

2(L+1)2
=

log(L2 +2T − 1)

2(L+1)2
.

By (EC.15), we have

H(µ,L,T ) ≤ m

2
·
[

π2

32m2(θ−1)ξ2
+

log(3T 2)

2(L+1)2

]
<m ·

(
π2

64m2(θ−1)ξ2
+

logT

(L+1)2

)
.

Case 2: (k+1)−2 <µ≤ k−2 where 1≤ k≤L

Similar to the previous case, we only need to bound the summation term. We have

T−L−1∑
t=1

1

1+µγt
=

T−L−1∑
ℓ=1

1

1+µ · [(L+1)2 +2(L+1)ℓ]

≤ (k+1)2 ·
T−L−1∑

ℓ=1

1

(L+1)2 +2(L+1)ℓ

≤ (k+1)2 · log(3T
2)

2(L+1)2
≤ log(3T 2)

2
.

By (EC.15), we have
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Ĥ(µ,L,T ) ≤ m

2
·
(

π2

32m2(θ−1)ξ2
+

log(3T 2)

2

)
≤ m ·

(
2+ logT +

π2

64m2(θ−1)ξ2

)

Case 3: (k+1)−2 <µ≤ k−2 and µ∈ S where k >L

For this case, we have

T−L−1∑
t=1

1

1+µγt
=

T−L−1∑
ℓ=1

1

1+µ · [(L+1)2 +2(L+1)ℓ]

≤
∫ T−L−1

0

dx

1+µ · [(L+1)2 +2(L+1)x]

≤ log(1+µ · [(L+1)2 +2(L+1)(T −L− 1))

2(L+1)µ

=
log(1+µ · (L+1)(2T −L− 1))

2(L+1)µ

≤ log(1+ k−2 · (L+1)(2T −L− 1))

2(L+1)(k+1)−2

≤ 2 log(1+ k−2 · (L+1)(2T −L− 1))

(L+1)k−2
.

Therefore, by (EC.15), we have

Ĥ(µ,L,T )≤ m

2
·
(
2 log(1+ k−2 · (L+1)(2T −L− 1))

(L+1)k−2
− 2ξ2 ·m2(θ−1) · k2 +

π2

16m2(θ−1)ξ2

)
=m ·

(
log(1+ k−2 · (L+1)(2T −L− 1))

(L+1)k−2
− ξ2 ·m2(θ−1)k2 +

π2

32m2(θ−1)ξ2

)
(EC.16)

In order to further bound (EC.15), consider the following optimization problem:

max
y≥(L+1)2

y ·

 log
(
1+ 4(L+1)T

y

)
(L+1)

− ξ2 ·m2(θ−1)

 . (EC.17)

Note that the optimal objective value in (EC.17) can be negative. If it is negative, we can simply

bound

Ĥ(µ,L,T )≤ m

2
· π2

32m2(θ−1)ξ2
.

We now focus on the case where the optimal objective value in (EC.17) is non-negative. Letting

y∗ denote the optimal solution to (EC.17), the following must hold (otherwise, the objective value

will be negative):

y∗ ≤ 4(L+1)

exp (ξ2m2(θ−1) · (L+1))− 1
·T. (EC.18)
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The first-order-optimality condition implies

4T · (y∗)−1

1+4(L+1)T · (y∗)−1
=

log
(
1+ 4(L+1)T

y∗

)
(L+1)

− ξ2m2(θ−1) (EC.19)

Substituting (EC.18) and (EC.19) back to (EC.17), we have

T−L−1∑
t=1

1

1+µγt
− ξ2 ·m2(θ−1)

µ
≤ 4T

1+4(L+1)T · (y∗)−1

Therefore, by (EC.16), we have

Ĥ(µ,L,T ) ≤ m ·
(

π2

64m2(θ−1)ξ2
+

4T

1+4(L+1)T · (y∗)−1

)
≤ m ·

(
π2

64m2(θ−1)ξ2
+

4T

exp (ξ2m2(θ−1) ·L)

)
,

where the last inequality again follows by (EC.18).

Electronic copy available at: https://ssrn.com/abstract=4577059


